

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru–560074

M.Tech in Computer Science and Engineering

Scheme and Syllabus of III & IV Semester (2024 Scheme)

VISION

To empower young minds through technology, research and innovation, to produce technically competent and socially responsible professionals in higher education.

MISSION

- To deliver excellence in education through innovative teaching, impactful research, and continuous skill development, preparing students to meet global challenges with technical expertise and ethical responsibility.
- To foster a transformative learning environment that integrates technology, research and practical experience, empowering students to become skilled professionals and socially conscious leaders.
- 3. To cultivate a culture of lifelong learning and professional excellence by encouraging creativity, research, and community engagement, equipping students with the skills to thrive in a dynamic world.
- 4. To provide a holistic educational experience that combines advanced technology, hands-on research, and community-focused learning, shaping students into competent, ethical professionals who contribute positively to society.

QUALITY POLICY

Rajarajeswari College of Engineering is committed to imparting quality technical education that nurtures competent, ethical professionals with global relevance. We ensure academic excellence through a dynamic, outcome-based curriculum, experienced faculty, and cutting-edge infrastructure. Continuous improvement is driven by innovation, research and strong industry collaboration. We foster holistic development and a progressive environment that supports lifelong learning, teamwork, and professional growth.

CORE VALUES

Academic Excellence, Integrity, Innovation, Global Competence, Continuous Improvement.

INDEX

	III Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	P24SCS301	Cloud Computing	1			
2.	P24SCSA312	Cloud Security	3			
3.	P24SCSB312	Cyber Forensics	5			
4.	P24SCSC312	Soft and Evolutionary Computing	7			
5.	P24SCSD312	Advances in Storage Area Network	9			
6.	P24SCSE312	Business Intelligence and its Applications	11			
7.	P24SCSA313	Managing Big Data	13			
8.	P24SCSB313	Pattern Recognition	15			
9.	P24SCSC313	Computer Vision	17			
10.	P24SCSD313	Deep Learning	19			
11.	P24SCSE313	Block Chain Technology	21			
12.	P24SCSP304	Project Work Phase-I	23			

	IV Semester						
Sl. No.	Sl. No. Course Code Course Title						
1.	P24SCSP401	Project work phase-II	25				
2.	P24SCSI402	Internship	27				

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M. Tech in Computer Science and Engineering

Scheme of Teaching and Examinations – 2024

(Effective from the Academic Year 2025-26)

III Semester

	S. No Course Category and Course Code				Tea	ching Hou	rs/ Week	J	Exami	nation		
S. No			Course Title	TD/PSB	T Lecture	Tutorial/ S SDA	Practical/ - Seminar	SEE Duration in Hours	CIE Marks	SEE Marks	Total Marks	Credits
1.	PCC	P24SCS301	Cloud Computing	CSE	3	0	0	3	50	50	100	3
2.	PEC	P24SCSX312	Professional Elective -III	CSE	3	0	0	3	50	50	100	3
3.	PEC	P24SCSX313	Professional Elective-IV	CSE	3	0	0	3	50	50	100	3
4.	PROJ	P24SCSP304	Project Work phase -I	CSE	0	20	0	3	50	50	100	10
5.	AEC	P24SCS305	Research Methodology and IPR	CSE	Online Certification F						PP	
		•		•	•			TOTAL	200	200	400	19

PCC: Professional core Course, IPCC-Integrated Professional Core Courses, PCC(PB): Professional Core Courses (Project Based), PCCL-Professional Core Course lab, NCMC- None Credit Mandatory Course, ,L-Lecture, T/SDA-Tutorial / Skill Development Activities, P-Practical, Proj: Project.

Prof	essional Elective-III	Profess	sional Elective-IV
P24 SCSA312	Cloud Security	P24 SCSA313	Managing Big Data
P24 SCSB312	Cyber Forensics	P24 SCSB313	Pattern Recognition
P24 SCSC312	Soft and Evolutionary Computing	P24 SCSC313	Computer Vision
P24 SCSD312	Advances in Storage Area Network	P24 SCSD313	Deep Learning
P24 SCSE312	Business Intelligence and its Applications	P24 SCSE313	Block chain Technology

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M. Tech in Computer Science and Engineering

Scheme of Teaching and Examinations – 2024

(Effective from the Academic Year 2025-26)

Project Work Phase-I: The project work shall be carried out individually. However, in case a disciplinary or interdisciplinary project requires more participants, then a group consisting of not more than three shall be permitted. Students in consultation with the guide in disciplinary project or guides/co-guides of all departments in case of multidisciplinary projects shall pursue a literature survey and complete the preliminary requirements of the selected Project work. Each student shall prepare a relevant introductory project document, and present a seminar. CIE marks shall be awarded by a committee comprising of HoD as Chairman, all Guides and a senior faculty of the concerned departments. The CIE marks awarded for project work phase -I shall be based on the evaluation of Project Report, Project Presentation skill, and performance in the Question and Answer session in the ratio of 50:25:25.

P24SCS305 – Research Methodology and IPR-Non- Credit Mandatory Course (NCMC) if Students have not studied this course in their undergraduate program then he/she has to take this course compulsory before completion of the minimum duration of the program (two years), however, this will not be considered for vertical progression.

HoD Dean-Academics Principal

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M. Tech in Computer Science and Engineering

Scheme of Teaching and Examinations - 2024

(Effective from the Academic Year 2025-26)

Semester: IV

						ching Hou	rs/ Week	I	Exami	nation	ıtion	
S. No	No Course Category and Course Code		Course Category and Course Title Course Code	TD/PSB	Lecture	Tutorial/ SDA	Practical/ Seminar	SEE ration in Hours	IE Marks	E Marks	tal Marks	Credits
					L	T/S	P	Dur	CI	SEE	Total	
1.	PROJ	P24SCSP401	Project work Phase-II	CSE	0	0	20	3	100	100	200	10
2.	INT	INT P24SCSI402 Internship CSE 13 Weeks		3	100	100	200	11				
					1			TOTAL	200	200	400	21

PCC: Professional core Course, IPCC-Integrated Professional Core Courses, PCC(PB): Professional Core Courses (Project Based), PCCL-Professional Core Course lab, NCMC- None Credit Mandatory Course, ,L-Lecture, T/SDA-Tutorial / Skill Development Activities, P-Practical, Proj: Project.

Project Work Phase-II: Students in consultation with the guide and continue the Project phase –I to complete the Project work Phase-II. Each student shall prepare project document, and present a seminar. CIE marks shall be awarded by a committee comprising of HoD as Chairman, all Guide and a senior faculty of the concerned departments. The CIE marks awarded for project work phase -II, shall be based on the evaluation of Project Report, Project Presentation skill, and performance in the Question and Answer session in the ratio of 50:25:25. SEE shall be at the end of IV semester. Project work evaluation and Viva-Voce examination (SEE), after satisfying the plagiarism check, shall be as per the institution norms.

Internship: Those, who have not completed the internship, shall be declared as fail in the internship course and have to complete the same during subsequent University examinations after satisfying the internship requirements. Internship SEE (University examination) shall be as per the Institution norms. CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide and a senior faculty of the department. The CIE marks awarded for internship shall be based on the evaluation of Report, Presentation skill, and performance in the Question and Answer session in the ratio of 50:25:25.

HoD Dean-Academics Principal

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III							
CLOUD COMPUTING							
	Category: PCC						
Course Code	:	P24SCS301	CIE	:	50 Marks		
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks		
Total Hours : 45(T) Total : 100 Marks							
Credits	:	3	SEE Duration	:	3 Hrs.		

	Course Objectives
1.	Discuss the concepts, characteristics, delivery models and benefits of cloud computing
2.	Explore the key technical, organizational and compliance challenges of cloud computing
3.	Grasp the concepts of virtualization efficiently.
4.	Explore the security issues that arise from cloud computing architectures intended for delivering Cloud based
	enterprise IT services.

Module - 1	No. of Hours
Introduction, Cloud Infrastructure: Cloud computing, Cloud computing delivery models and	
services, Ethical issues, Cloud vulnerabilities, Cloud computing at Amazon, Cloud computing the	9
Google perspective, Microsoft Windows Azure and online services, Open-source software platforms	
for private clouds, Cloud storage diversity and vendor lockin, Energy use and ecological impact,	
Service level agreements, User experience and software licensing. Exercises and problems.	
Module - 2	No. of Hours
Cloud Computing: Application Paradigms.: Challenges of cloud computing, Architectural styles of	
cloud computing,	9
Workflows: Coordination of multiple activities, Coordination based on a state machine model: The	
Zookeeper, The Map Reduce programming model, A case study: The Gre The Web application,	
Cloud for science and engineering, High-performance computing on a cloud, Cloud computing for	
Biology research, Social computing, digital content and.	
Module - 3	No. of Hours
Cloud Resource Virtualization: Virtualization, Layering and virtualization, Virtual machine	
monitors, Virtual Machines, Performance and Security Isolation, Full virtualization and	9
paravirtualization, Hardware support for virtualization, Case Study: Xen a VMM based	
paravirtualization, Optimization of network virtualization, vBlades, Performance comparison of	
virtual machines, The dark side of virtualization, Exercises and problems	
Module - 4	No. of Hours
Cloud Resource Management and Scheduling: Policies and mechanisms for resource management,	
Application of control theory to task scheduling on a cloud, Stability of a two-level resource	9
allocation architecture, Feedback control based on dynamic thresholds, Coordination of specialized	
autonomic performance managers, A utility-based model for cloud-based Web services, Resourcing	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds,	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds,	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines,	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic	No. of Hours
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems	No. of Hours
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5	No. of Hours
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2 instances, Connecting clients to cloud instances through firewalls, Security rules for application and transport layer protocols in EC2, How to launch an EC2 Linux instance and connect to it, How to use S3 final091220232 in java, Cloud-based simulation of a distributed trust algorithm, A trust	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2 instances, Connecting clients to cloud instances through firewalls, Security rules for application and transport layer protocols in EC2, How to launch an EC2 Linux instance and connect to it, How to use	

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

Course O	Course Outcomes: At the end of the course, the students will be able to				
CO1	Compare the strengths and limitations of cloud computing				
CO2	Identify the architecture, infrastructure and delivery models of cloud computing				
СОЗ	Demonstrate the working of VM and VMM on any cloud platforms (public/private), and run a software service on that.				
CO4	Identify the known threats, risks, vulnerabilities and privacy issues associated with Cloud Based IT services.				

Text Bo	oks
1.	Cloud Computing: Theory and Practice, Dan C Marinescu Elsevier (MK), 2013.

Reference Text Books						
1.	Computing Principles and Paradigms, Rajkumar Buyya, James Broberg, AndrzejGoscinsk, I Willey, 2014.					
2.	Cloud Computing Implementation, Management and Security John W Rittinghouse, James F Ransome, CRC					
	Press, 2013.					

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks		
			to			
Theory	Internal Assessment1	50	30			
	Internal Assessment2	50	(Average of Best Two			
	Internal Assessment3	50	Assessments)	50		
Self	Two Assignments	20	10			
Learning	Seminar Presentation	20	10			
SEE	Semester End Examination	100	50	50		
	Grand Total					

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1

3-High, 2-Moderate, 1-Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III								
CLOUD SECURITY								
	Category: PEC							
Course Code	:	P24SCSA312	CIE	:	50 Marks			
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45(T)	Total	:	100 Marks			
Credits	:	3	SEE Duration	:	3 Hrs.			

	Course Objectives						
1.	Define core cloud computing concepts and fundamental principles, the Impact of Cloud Computing on Users.						
2.	Explore Infrastructure Security and Application-Level Data Security.						
3.	Explain Identity and Access management.						
4.	Explore Security Management in the Cloud.						
5.	Illustrate Security Management in the Cloud.						

Module - 1	No. of Hours
WHAT IS CLOUD COMPUTING? Cloud Computing Defined, The SPI Framework for Cloud	
Computing, The Traditional Software Model, The Cloud Services Delivery Model, Cloud	9
Deployment Models, Key Drivers to Adopting the Cloud, The Impact of Cloud Computing on	
Users, Governance in the Cloud, Barriers to Cloud Computing Adoption in the Enterprise.	
Module - 2	No. of Hours
Infrastructure Security: Infrastructure Security: The Network Level, Infrastructure Security: The	
Host Level, Infrastructure Security: The Application Level Data Security and Storage: Aspects of	9
Data Security, Data Security Mitigation, Provider Data and Its Security.	
Module - 3	No. of Hours
Identity and Access Management: Trust Boundaries and IAM, Why IAM?, IAM Challenges, IAM	
Definitions, IAM Architecture and Practice, Getting Ready for the Cloud, Relevant IAM Standards	9
and Protocols for Cloud Services, IAM Standards, Protocols, and Specifications for Consumers,	
Comparison of Enterprise and Consumer Authentication Standards and Protocols, IAM Practices in	
the Cloud, Cloud Authorization Management, Cloud Service Provider IAM Practice	
Module - 4	No. of Hours
Security Management in the Cloud: Security Management Standards, Security Management in the	
Cloud, Availability Management, SaaS Availability Management, PaaS Availability Management,	9
IaaS Availability Management, Access Control	
Module - 5	No. of Hours
Audit and Compliance: Internal Policy Compliance, Governance, Risk, and Compliance (GRC),	
Illustrative Control Objectives for Cloud Computing, Incremental CSP-Specific Control	9
Objectives, Additional Key Management Control Objectives, Control Considerations for CSP	
Users, Regulatory/External Compliance, Other Requirements, Cloud Security Alliance, Auditing	
the Cloud for Compliance	

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1	Explore the impact of Cloud Computing on Users					
CO2	Explain the Infrastructure Security and Application Level Data Security					
CO3	Define Identity Management					
CO4	Explore the Security Management in the cloud					
CO5	Illustrate Security Management in the Cloud					

T	ext Bo	oks
	1.	Vic (J.R.) Winkler, Securing the Cloud, Cloud Computer Security Techniques and Tactics, Syngress, 2011

Referen	ce Text Books
1.	Tim Mather, SubraKumaraswamy, ShahedLatif, Cloud Security and Privacy, An Enterprise Perspective on
	Risks and Compliance, Oreilly Media, 2009

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment1	50	30	
	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50
Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	100			

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1
CO5	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III						
CYBER FORENSICS						
		Category: PEC				
Course Code	:	P24SCSB312	CIE	:	50 Marks	
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks	
Total Hours	:	45(T)	Total	:	100 Marks	
Credits	:	3	SEE Duration	:	3 Hrs.	

	Course Objectives						
1.	Define computer forensics and computer investigation						
2.	2. Illustrate the Data Acquisition						
3.	Explain how Live Acquisition, Email Investigation is carried out.						
4.	Explore Foot printing and Social Engineering						

Module - 1	No. of Hours.
Computer Forensics and Investigation as a Profession, Understanding Computer Investigation.	9
Module - 2	No. of Hours.
Data Acquisition , Processing Crime and incident Scenes	9
Module - 3	No. of Hours.
Virtual machines, Network Forensics and Live Acquisition, Email Investigation.	9
Module - 4	No. of Hours.
Introduction to Ethical Hacking – Foot printing and Social Engineering- Scanning and Enumeration	9
Module - 5	No. of Hours.
System Hacking- Sniffers, Denial of Service - Session Hijacking.	9

Course O	Course Outcomes: At the end of the course, the students will be able to				
CO1					
CO2	Demonstrate the data Acquisition				
CO3	Explore the Email investigation				
CO4	Identify the vulnerabilities in a given network infrastructure.				
CO5	Implement real-world hacking techniques to test system security				

Text Bo	Text Books					
1.	Bill Nelson, Amelia Phillips, Frank Enfinger, Christopher Steuart, —Computer Forensics and Investigations,					
	Cengage Learning, India Edition, 2016.					
2.	CEH official Certfied Ethical Hacking Review Guide, Wiley India Edition, 2015.					

Referen	Reference Text Books						
1.	John R.Vacca, —Computer Forensicsl, Cengage Learning, 2005						
2.	Marjie T. Britz, —Computer Forensics and Cyber Crimel: An Introductionl, 3rd Edition, Prentice Hall, 2013						

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment1	50	30	
	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50
Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	100			

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1
CO5	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III							
SOFT AND EVOLUTIONARY COMPUTING							
		Category: PEC					
Course Code	Course Code : P24SCSC312 CIE : 50 Marks						
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks		
Total Hours : 45(T) Total : 100 Marks							
Credits	:	3	SEE Duration	:	3 Hrs.		

	Course Objectives					
1.	To Understand soft computing techniques					
2.	Able to apply the learned techniques to solve realistic problems					
3.	Able to Differentiate soft computing with hard computing techniques					

Module - 1	No. of Hours	
Introduction to soft computing : ANN, FS, GA, SI, ES, Comparing among intelligent systems.		
ANN: introduction, biological inspiration, BNN&ANN, classification, first Generation NN,	9	
perceptron, illustrative problems.		
Module - 2	No. of Hours	
Adaline, Medaline, ANN: (2nd generation), introduction, BPN, KNN,HNN, BAM, RBF,SVM and		
illustrative problem.	9	
Module - 3	No. of Hours	
Fuzzy logic: introduction, human learning ability, undecidability, probability theory, classical set and		
fuzzy set, fuzzy setoperations, fuzzy relations, fuzzy compositions, natural language and fuzzy	9	
interpretations, structure of fuzzy inference system, illustrative problems.		
Module - 4	No. of Hours	
Introduction to GA, GA, procedures, working of GA, GA applications, applicability, evolutionary		
programming, working of EP, GA based Machine learning classifier system, illustrative problems.	9	
Module - 5		
Swarm Intelligent system: Introduction, Background of SI, Ant colony system Working of ACO,		
Particle swarm Intelligence (PSO).	9	

Course O	Course Outcomes: At the end of the course, the students will be able to				
CO1	Demonstrate the working of soft computing techniques				
CO2	Apply the learned techniques to solve realistic problems				
CO3	CO3 Differentiate soft computing with hard computing techniques				

Text Bo	oks
1.	Soft computing: N. P Padhy and S P Simon, Oxford University Press 2015

Referen	Reference Text Books					
1	Principles of Soft Computing Shiyanandam Deepa S. N. Wiley India 2011					

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment1	50	30	
	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50
Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	100			

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped, 2-Moderately mapped, 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III								
ADVANCED IN STORAGE AREA NETWORK Category: PEC								
Course Code : P24SCSD312 CIE : 50 Marks								
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45(T)	Total	:	100 Marks			
Credits	:	3	SEE Duration	:	3 Hrs.			

	Course Objectives
1.	Explore contrast storage centric and server centric systems.
2.	Define metrics used for Designing storage area networks.
3.	Discuss the data centers for maintaining the data with the concepts of backup mainly remote mirroring
	concepts.

Module - 1	No. of Hours
Introduction: Server Centric IT Architecture and its Limitations; Storage – Centric IT Architecture	
and its advantages. Case study: Replacing a server with Storage Networks The Data Storage and	9
Data Access problem; The Battle for size and access. Intelligent Disk Subsystems: Architecture of	
Intelligent Disk Subsystems; Hard disks and Internal I/O Channels; JBOD, Storage virtualization	
using RAID and different RAID levels; Caching: Acceleration of Hard Disk Access; Intelligent	
disk subsystems, Availability of disk subsystems.	
Module - 2	No. of Hours
I/O Techniques: The Physical I/O path from the CPU to the Storage System; SCSI; Fibre Channel	
Protocol Stack; FibreChannel SAN; IP Storage. Network Attached Storage: The NAS Architecture,	9
The NAS hardware Architecture, The	
NAS Software Architecture, Network connectivity, NAS as a storage system. File System and	
NAS: Local File Systems; Network file Systems and file servers; Shared Disk file systems;	
Comparison of fibre Channel and NAS.	
Module - 3	No. of Hours
Storage Virtualization: Definition of Storage virtualization; Implementation Considerations;	
Storage virtualization on Block or file level; Storage virtualization on various levels of the storage	9
Network; Symmetric and Asymmetric storage virtualization in the Network	
Module - 4	No. of Hours
SAN Architecture and Hardware devices: Overview, Creating a Network for storage; SAN	
Hardware devices; The fibrechannel switch; Host Bus Adaptors; Putting the storage in SAN;	9
Fabric operation from a Hardware perspective. Software Components of SAN: The switch's	
Operating system; Device Drivers; Supporting the switch's components; Configuration options for	
SANs	
Module - 5	No. of Hours
Management of Storage Network: System Management, Requirement of management System,	
Support by Management System, Management Interface, Standardized Mechanisms, Property	9
Mechanisms, Inband Management, Use of SNMP, CIM and WBEM, Storage Management	
Initiative Specification (SMIS), CMIP and DMI, Optional Aspects of the Management of Storage	
Networks, Summary.	

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1	y 1					
CO2	Apply the techniques used for data maintenance					
CO3	Realize strong virtualization concepts					
CO4	Illustrate RAID concepts, policies for LUN masking, file systems					

Text Bo	oks
1.	Storage Networks Explained, Ulf Troppens, Rainer Erkens and Wolfgang Muller, Wiley India, 2013.
2.	Storage Networks The Complete Reference, Robert Spalding, Tata McGrawHill, 2011.
3.	Storage Networking Fundamentals: An Introduction to Storage Devices Subsystems, Applications,
	Management, and File Systems, Marc Farley, Cisco Press, 2005.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment1	50	30	
	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50
Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	100			

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III								
BUSINESS INTELLIGENCE AND ITS APPLICATIONS								
	Category: PEC							
Course Code	:	P24SCSE312	CIE	:	50 Marks			
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45(T)	Total	:	100 Marks			
Credits	:	3	SEE Duration	:	3 Hrs.			

	Course Objectives
1.	Define the fundamental concepts of Business Intelligence and its implementation
2.	Appreciate the importance of Business reporting and performance measurement
3.	Gain the knowledge and skills for using data warehouses and data mining techniques for business intelligence
	purposes.

Module - 1	No. of Hours
Development Steps, BI Definitions, BI Decision Support Initiatives, Development Approaches,	
Parallel Development Tracks, BI Project Team Structure, Business Justification, Business Divers,	9
Business Analysis Issues, Cost – Benefit Analysis, Risk Assessment, Business Case Assessment	
Activities, Roles Involved In These Activities, Risks Of Not Performing Step, Hardware,	
Middleware, DBMS Platform, Non Technical Infrastructure Evaluation	
Module - 2	No. of Hours
Managing The BI Project, Defining And Planning The BI Project, Project Planning Activities,	
Roles And Risks Involved In These Activities, General Business Requirement, Project Specific	9
Requirements, Interviewing Process	
Module - 3	No. of Hours
Differences in Database Design Philosophies, Logical Database Design, Physical Database Design,	
Activities, Roles And Risks Involved In These Activities, Incremental Rollout, Security	9
Management, Database Backup And Recovery	
Module - 4	No. of Hours
Growth Management, Application Release Concept, Post Implementation Reviews, Release	
Evaluation Activities, The Information Asset and Data Valuation, Actionable Knowledge – ROI,	9
BI Applications, The Intelligence Dashboard	
Module - 5	No. of Hours
Business View of Information technology Applications: Business Enterprise excellence, Key	
purpose of using IT, Type of digital data, basics f enterprise reporting, BI road ahead.	9

Course O	Course Outcomes: At the end of the course, the students will be able to						
CO1	Explain the complete life cycle of BI/Analytical development						
CO2	Illustrate technology and processes associated with Business Intelligence framework						
CO3	Demonstrate a business scenario, identify the metrics, indicators and make L2 recommendations to achieve the business goal						

Text Bo	oks
1.	Larissa T Moss and ShakuAtre, Business Intelligence Roadmap: The Complete Project Lifecycle for Decision
	Support Applications, Addison Wesley Information Technology Series, 2003
2.	R N Prasad, SeemaAcharya, Fundamentals of Business Analytics, Wiley India, 2011

Referen	Reference Text Books							
1.	David Loshin, Business Intelligence: The Savvy Manager's Guide, Morgan Kaufmann							
2.	Brian Larson, Delivering Business Intelligence with Microsoft SQL Server 2005, McGraw Hill, 2006							
3.	Lynn Langit, Foundations of SQL Server 2008 Business Intelligence, Apress, 2011							

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment1	50	30	
	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50
Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	100			

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III								
MANAGING BIG DATA								
		Category:	PEC					
Course Code	:	P24SCSA313	CIE	:	50 Marks			
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45(T)	Total	:	100 Marks			
Credits	:	3	SEE Duration	:	3 Hrs.			

	Course Objectives						
1.	1. Explore and apply the Big Data analytic techniques for business applications.						
2.	Discuss the overview of Apache Hadoop						
3.	Able to implement basic technologies that forms the foundations of Big Data						

	N. CII
Module - 1	No. of Hours
Meet Hadoop: Data!, Data Storage and Analysis, Querying All Your Data, Beyond Batch, Comparison with Other Systems: Relational Database Management Systems, Grid Computing, Volunteer	
Computing Hadoop Fundamentals MapReduce A Weather Dataset: Data Format, Analyzing the Data	
with Unix Tools, Analyzing the Data with Hadoop: Map and Reduce, Java MapReduce, Scaling Out:	
Data Flow, Combiner Functions, Running a Distributed MapReduce Job, Hadoop Streaming The	9
Hadoop Distributed Filesystem The Design of HDFS, HDFS Concepts: Blocks, Namenodes and	9
Datanodes, HDFS Federation, HDFS High-Availability, The Command-Line Interface, Basic	
Filesystem Operations, HadoopFilesystems Interfaces, The Java Interface, Reading Data from a	
Hadoop URL, Reading Data Using the FileSystem API, Writing Data, Directories, Querying the	
Filesystem, Deleting Data, Data Flow: Anatomy of a File Read, Anatomy of a File Write.,	
Module - 2	No. of Hours
YARN Anatomy of a YARN Application Run: Resource Requests, Application Lifespan, Building	140. 01 110415
YARN Applications, YARN Compared to MapReduce, Scheduling in YARN: The FIFO Scheduler,	
The Capacity Scheduler, The Fair Scheduler, Delay Scheduling, Dominant Resource Fairness Hadoop	
I/O Data Integrity, Data Integrity in HDFS, Local File System, ChecksumFileSystem, Compression,	9
Codecs, Compression and Input Splits, Using Compression in MapReduce, Serialization, The Writable	
Interface, Writable Classes, Implementing a Custom Writable, Serialization Frameworks, File-Based	
Data Structures: SequenceFile	
Module - 3	No. of Hours
Developing a MapReduce Application The Configuration API, Combining Resources, Variable	1100 01 110015
Expansion, Setting Up the Development Environment, Managing Configuration,	
GenericOptionsParser, Tool, and ToolRunner, Writing a Unit Test with MRUnit: Mapper, Reducer,	
Running Locally on Test Data, Running a Job in a Local Job Runner, Testing the Driver, Running on a	
Cluster, Packaging a Job, Launching a Job, The MapReduce Web UI, Retrieving the Results,	
Debugging a Job, Hadoop Logs, Tuning a Job, Profiling Tasks, MapReduce Workflows: Decomposing	9
a Problem into MapReduce Jobs, JobControl, Apache Oozie How MapReduce Works Anatomy of a	
MapReduce Job Run, Job Submission, Job Initialization, Task Assignment, Task Execution, Progress	
and Status Updates, Job Completion, Failures: Task Failure, Application Master Failure, Node	
Manager Failure, Resource Manager Failure, Shuffle and Sort: The Map Side The Reduce Side,	
Configuration Tuning, Task Execution: The Task Execution Environment, Speculative Execution,	
Output Committers	
Module - 4	No. of Hours
MapReduce Types and Formats: MapReduce Types, Input Formats: Input Splits and Record's Text	
Input, Binary Input, Multiple Inputs, Database Input (and Output) Output Formats: Text Output,	
Binary Output, Multiple Outputs, Lazy Output, Database Output, Flume Installing Flume, An	
Example: Transactions and Reliability, Batching, The HDFS Sink, Partitioning and Interceptors, File	
Formats, Fan Out, Delivery Guarantees, Replicating and Multiplexing Selectors, Distribution: Agent	
Tiers, Delivery Guarantees, Sink Groups, Integrating Flume with Applications, Component Catalog	9
Module - 5	No. of Hours
Pig Installing and Running Pig, Execution Types, Running Pig Programs, Grunt, Pig Latin Editors, An	_
Example: Generating Examples, Comparison with Databases, Pig Latin: Structure, Statements,	9
Expressions, Types, Schemas, Functions, Data Processing Operators: Loading and Storing Data,	
Filtering Data, Grouping and Joining Data, Sorting Data, Combining and Splitting Data. Spark An	
Example: Spark Applications, Jobs, Stages and Tasks, A Java Example, A Python Example, Resilient	

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

Distributed Datasets: Creation, Transformations and Actions, Persistence, Serialization, Shared Variables, Broadcast Variables, Accumulators, Anatomy of a Spark Job Run, Job Submission, DAG Construction, Task Scheduling, Task Execution, Executors and Cluster Managers: Spark on YARN

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1 Managing big data using Hadoop and SPARK technologies						
CO2	Explain HDFS and MapReduce concepts					
CO3 Install, configure, and run Hadoop and HDFS						
CO4	Apply Big Data Solutions using Hadoop Eco System					

	Reference Text Books							
1.	Hadoop: The Definitive Guide, Tom White, O'Reilley, 3 rd Edition, 2012							
2.	SPARK: The Definitive Guide, MateiZaharia and Bill Chambers, Oreilly, 2018							
3.	Apache Flume: Distributed Log Collection for Hadoop, D'Souza and Steve Hoffman Oreilly, 2014							

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment1	50	30	
	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50
Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	100			

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III								
PATTERN RECOGNITION								
		Category: PEC						
Course Code	:	P24 SCSB313	CIE	:	50 Marks			
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks			
Total Hours : 45(T) Total : 100 Marks								
Credits	:	3	SEE Duration	:	3 Hrs.			

	Course Objectives					
1.	Explain pattern recognition principals					
2.	Able to implement algorithms for Pattern Recognition					
3.	Ability to analyze decision tress.					

Module - 1	No. of Hours
Introduction: Definition of PR, Applications, Datasets for PR, Different paradigms for PR,	
Introduction to probability, events, random variables, Joint distributions and densities, moments.	
Estimation minimum risk estimators, problems	9
Module - 2	No. of Hours
Representation: Data structures for PR, Representation of clusters, proximity measures, size of	
patterns, Abstraction of Data set, Feature extraction, Feature selection, Evaluation	9
Module - 3	No. of Hours
Nearest Neighbour based classifiers & Bayes classifier: Nearest neighbour algorithm, variants of NN	
algorithms, use of NN for transaction databases, efficient algorithms, Data reduction, prototype	
selection, Bayes theorem, minimum error rate classifier, estimation of probabilities, estimation of	9
probabilities, comparison with NNC, Naive Bayes classifier, Bayesian belief network	
Module - 4	No. of Hours
Naive Bayes classifier, Bayesian belief network, Decision Trees: Introduction, DT for PR,	
Construction of DT, splitting at the nodes, Over fitting & Pruning, Examples, Hidden Markov models:	9
Markov models for classification, Hidden Markov models and classification using HMM	
Module - 5	No. of Hours
Clustering: Hierarchical (Agglomerative, single/complete/average linkage, wards, Partitional (Forgy's,	
kmeans, Isodata), clustering large data sets, examples, An application: Handwritten Digit recognition	9

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1	Choose appropriate algorithms for Pattern Recognition.					
CO2	Apply nearest neighbour classifier.					
CO3	Apply Decision tree and clustering techniques to various applications					
CO4	Get acquainted with recent developments in pattern recognition and its applications.					

Reference Text Books						
1.	Pattern Recognition (An Introduction), V Susheela Devi, M Narsimha Murthy. Universities press, 2011.					
2.	Pattern Recognition & Image Analysis, Earl Gose, Richard Johnsonbaugh, Steve Jost . PH, 1996.					
3.	Pattern Classification, Duda R. O., P.E. Hart, D.G. Stork, John Wiley and sons, 2000					

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment1	50	30	
	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	100			

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) M.Tech in Computer Science and Engineering

SEMESTER-III						
COMPUTER VISION Cotogowy PEC						
Category: PEC Course Code : P24SCSC313 CIE : 50 Marks						
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks	
Total Hours	:	45(T)	Total	:	100 Marks	
Credits	:	3	SEE Duration	:	3 Hrs.	

	Course Objectives				
1.	Explore the fundamentals of image formation.				
2.	Discuss the major ideas, methods, and techniques of computer vision and pattern recognition.				
3.	Able to implement algorithms and techniques to analyze and interpret the visible world around us.				

Module - 1	No. of Hours
CAMERAS: Pinhole Cameras, Radiometry - Measuring Light: Light in Space, Light Surfaces,	
Important Special Cases, Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their	
Effects, Local Shading Models, Application: Photometric Stereo, Inter-reflections: Global Shading	
Models, Color: The Physics of Color, Human Color Perception, Representing Color, A Model for	9
Image Color, Surface Color from Image Color the File system, Deleting Data, Data Flow: Anatomy of	
a File Read, Anatomy of a File Write.,	
Module - 2	No. of Hours
Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and	_
Fourier Transforms, Sampling and Aliasing, Filters as Templates, Edge Detection: Noise, Estimating	9
Derivatives, Detecting Edges, Texture: Representing Texture, Analysis (and Synthesis) Using Oriented	
Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.	
Module - 3	No. of Hours
The Geometry of Multiple Views: Two Views, Stereopsis: Reconstruction, Human Stereposis,	_
Binocular Fusion, Using More Cameras, Segmentation by Clustering: What Is Segmentation?, Human	9
Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction,	
Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,	
Module - 4	No. of Hours
Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a	
Probabilistic Inference Problem, Robustness, Segmentation and Fitting Using Probabilistic Methods:	
Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice, Tracking With	9
Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman	
Filtering, Data Association, Applications and Examples.	
Module - 5	No. of Hours
Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the	
Perspective Projection, Affine Cameras and Affine Projection Equations, Geometric Camera	
Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking	
Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile Robot	
Localization, Model- Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency,	_
Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification,	9
Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment.	

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1	Implement fundamental image processing techniques required for computer vision					
CO2	Perform shape analysis					
CO3	Implement boundary tracking techniques					
CO4	Apply chain codes and other region descriptors					

Referen	Reference Text Books							
1.	Computer Vision – A Modern Approach, David A. Forsyth and Jean Ponce, PHI Learning, 2009							
2.	Computer and Machine Vision – Theory, Algorithms and Practicalities, E. R. Davies, Elsevier 4 th Edition, 2013							

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment 1 50 30			
	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50
Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	100			

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III							
DEEP LEARNING Category: PEC							
Course Code : P24SCSD313 CIE : 50 Marks							
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks		
Total Hours	:	45(T)	Total	:	100 Marks		
Credits	:	3	SEE Duration	:	3 Hrs.		

	Course Objectives						
1.	Discuss the context of neural networks and deep learning						
2.	Have a working knowledge of neural networks and deep learning						
3.	Explore the parameters for neural networks.						

Module - 1	No. of Hours
Machine Learning Basics: Learning Algorithms, Capacity, Overfitting and Underfitting, Hyperparameters and Validation Sets, Estimator, Bias and Variance, Maximum Likelihood Estimation,	
Bayesian Statistics, Supervised Learning Algorithms, Unsupervised Learning Algorithms, Stochastic	9
Gradient Descent, building a Machine Learning Algorithm, Challenges Motivating Deep Learning	9
Module - 2	No. of Hours
Deep Feedforward Networks: Gradient-Based Learning, Hidden Units, Architecture Design,	
BackPropagation. Regularization: Parameter Norm Penalties, Norm Penalties as Constrained	
Optimization, Regularization and UnderConstrained Problems, Dataset Augmentation, Noise	
Robustness, SemiSupervised Learning, Multi-Task Learning, Early Stopping, Parameter Tying and	9
Parameter Sharing, Sparse Representations, Bagging, Dropout	
Module - 3	No. of Hours
Optimization for Training Deep Models: How Learning Differs from Pure Optimization, Challenges	
in Neural Network Optimization, Basic Algorithms. Parameter Initialization Strategies, Algorithms	
with Adaptive Learning Rates. Convolutional Networks: The Convolution Operation, Motivation,	
Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the Basic Convolution	9
Function, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or	
Unsupervised Features	
Module - 4	No. of Hours
Sequence Modelling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent	
Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep	9
Recurrent Networks, Recursive Neural Networks. Long short-term memory	
Module - 5	No. of Hours
Practical Methodology: Performance Metrics, Default Baseline Models, Determining Whether to	
Gather More Data, Selecting Hyperparameters, Debugging Strategies, Example: Multi-Digit Number	9
Recognition. Applications: Vision, NLP, Speech.	

Course O	Course Outcomes: At the end of the course, the students will be able to						
CO1	Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.						
CO2	Implement deep learning algorithms and solve real-world problems.						
CO3	Execute performance metrics of Deep Learning Techniques.						
CO4	Compare modeling aspects of various neural network architectures						

Text Bo	Text Books							
1.	Deep Learning, Lan Good fellow and YoshuaBengio, MIT Press https://www.deeplearn ingbook.org/ 2016.							
2.	Neural Networks: Asystematic Introduction, Raúl Rojas, 1996							
3.	Pattern Recognition and machine Learning, Chirstopher Bishop, 2007.							

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment1	50	30	
	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50
Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	100			

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III					
BLOCK CHAIN TECHNOLOGY					
		Category: PEC			
Course Code	:	P24SCSE313	CIE	:	50 Marks
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks
Total Hours	:	45(T)	Total	:	100 Marks
Credits	:	3	SEE Duration	:	3 Hrs.

	Course Objectives							
1.	Explain the strong technical knowledge of Blockchain technologies.							
2.	Analyzing the blockchain decentralization and cryptography concepts.							
3.	Explore the driving force behind the cryptocurrencyBitcoin, along with the Decentralization.							

Module - 1	No. of Hours		
Blockchain 101: Distributed systems, History of blockchain, Introduction to blockchain, Types of	9		
blockchain, CAP theorem and blockchain, Benefits and limitations of blockchain			
Module - 2	No. of Hours		
Decentralization and Cryptography: Decentralization using blockchain, Methods of decentralization,			
Routes to decentralization, Decentralized organizations. Cryptography and Technical Foundations:			
Cryptographic primitives, Asymmetric cryptography, Public and private keys			
Module - 3	No. of Hours		
Bitcoin and Alternative Coins A: Bitcoin, Transactions, Blockchain, Bitcoin payments B: Alternative			
Coins, Theoretical foundations, Bitcoin limitations, Namecoin, Litecoin, Primecoin, Zcash	9		
Module - 4	No. of Hours		
Smart Contracts and Ethereum 101: Smart Contracts: Definition, Ricardian contracts. Ethereum			
101:Introduction, Ethereumblockchain, Elements of the Ethereumblockchain, Precompiled contracts	9		
Module - 5			
Alternative Blockchains: Blockchains, Blockchain-Outside of Currencies: Internet of Things,			
Government, Health, Finance, Media	9		

Course O	Course Outcomes: At the end of the course, the students will be able to						
CO1	Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.						
CO2	Implement deep learning algorithms and solve real-world problems.						
CO3	Execute performance metrics of Deep Learning Techniques.						
CO4	Compare modeling aspects of various neural network architectures						

Text Bo	oks
1.	Bitcoin and Cryptocurrency Technologies, Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew
	Miller, Steven Goldfeder, Princeton University, 2016

Referen	ce Text Books
1.	Blockchain Basics: A Non-Technical Introduction in 25 Steps, Daniel Drescher, Apress, First Edition, 2017
2.	Mastering Bitcoin: Unlocking Digital Cryptocurrencies, Andreas M. Antonopoulos, O'Reilly Media, First Edition, 2014

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks and Minimum passing marks for the SEE is 40% of the maximum marks of SEE. The minimum passing marks is 50% i.e. sum of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	Max. Marks Scaling Down	Total Marks
			to	
Theory	Internal Assessment1	50	30	

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

	Internal Assessment2	50	(Average of Best Two	
	Internal Assessment3	50	Assessments)	50
Self	Two Assignments	20	10	
Learning	Seminar Presentation	20	10	
SEE	Semester End Examination	100	50	50
	Gra	nd Total		100

SEMESTER END EXAMINATION

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. Two questions of 20 marks (with minimum of 3 sub questions) from each module with internal choice.
- 3. Students should answer five full questions, selecting one full question from each module.
- 4. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-III										
PROJECT WORK PHASE -I										
		Category:	PROJ							
Course Code	:	P24SCSP304	CIE	:	50 Marks					
Teaching Hours L:P:S	:	0:20:0	SEE	:	50 Marks					
Total Hours	:	-	Total	:	100 Marks					
Credits	:	10	SEE Duration	:	3 Hrs.					

	Course Objectives
1.	Support independent learning
2.	Guide to select and utilize adequate information from varied resources maintaining ethics.
3.	Guide to organize the work in the appropriate manner and present information (acknowledging the sources)
	clearly.
4.	Develop interactive, communication, organization, time management, and presentation skills.
5.	Impart flexibility and adaptability.
6.	Inspire independent and team working
7.	Expand intellectual capacity, credibility, judgment, intuition
8.	Adhere to punctuality, setting and meeting deadlines.
9.	Instil responsibilities to oneself and others.
10.	Train students to present the topic of project work in a seminar without any fear, face audience confidently,
	enhance communication skill, involve in group discussion to present and exchange ideas.

Project Phase-1 Students in consultation with the guide/s shall carry out literature survey/ visit industries to finalize the topic of the Project. Subsequently, the students shall collect the material required for the selected project, prepare synopsis and narrate the methodology to carry out the project work.

Seminar: Each student, under the guidance of a Faculty, is required to

- Present the seminar on the selected project orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit two copies of the typed report with a list of references.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1	Demonstrate a sound technical knowledge of their selected project topic					
CO2	Undertake problem identification, formulation, and solution.					
CO3	Design engineering solutions to complex problems utilising a systems approach					
CO4	Communicate with engineers and the community at large in written an oral forms					
CO5	Demonstrate the knowledge, skills and attitudes of a professional engineer.					

CIE procedure for Project Work: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide. The CIE marks awarded for the project work shall be based on the evaluation of the project work Report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE procedure for Project Work: SEE for project work will be conducted by the two examiners appointed by the BOS Chairman and get the approval from the principal / COE. The SEE marks awarded for the project work shall be based on the evaluation of project work Report, project presentation skill, and question and answer session in the ratio 50:25:25.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1
CO5	3	3	3	3	2	-	-	-	-	-	1

³⁻Highly mapped 2-Moderately mapped 1-Slightly mapped

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-IV										
PROJECT WORK PHASE - II										
Category: PROJ										
Course Code	:	P24SCSP401	CIE	:	100 Marks					
Teaching Hours L:P: SDA	:	0:20:0	SEE	:	100Marks					
Total Hours	:	-	Total	:	200 Marks					
Credits		10	SEE Duration	:	3					

Course Objectives:

- To support independent learning.
- To guide to select and utilize adequate information from varied resources maintaining ethics.
- To guide to organize the work in the appropriate manner and present information (acknowledging the sources) clearly.
- To develop interactive, communication, organization, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgment, intuition.
- To adhere to punctuality, setting and meeting deadlines
- To instill responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas

Project Work Phase - II:

- Each student of the project batch shall involve in carrying out the project work jointly in constant consultation
 with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding
 plagiarism.
- Follow the Software Development life cycle
- Data Collection ,Planning
- Design the Test cases
- Validation and verification of attained results
- Significance of parameters w.r.t scientific quantified data.
- Publish the project work in reputed Journal.

Course Outcomes: At the end of the course, the students will be able to

- Present the project and be able to defend it.
- Make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.
- Habituated to critical thinking and use problem solving skills
- Communicate effectively and to present ideas clearly and coherently in both the written and oral forms.
- Work in a team to achieve common goal.
- Learn on their own, reflect on their learning and take appropriate actions to improve it. Identify areas for future knowledge and skill development.
- Expand intellectual capacity, credibility, judgment, intuition.
- Acquire the knowledge of administration, marketing, finance and economics

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

CIE procedure for Project Work: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide. The CIE marks awarded for the project work shall be based on the evaluation of the project work Report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE procedure for Project Work: SEE for project work will be conducted by the two examiners appointed by the BOS Chairman and get the approval from the principal / COE. The SEE marks awarded for the project work shall be based on the evaluation of project work Report, project presentation skill, and question and answer session in the ratio 50:25:25.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1
CO5	3	3	3	3	2	-	-	-	-	-	1

³⁻Highly mapped, 2-Moderately mapped, 1-Slightly mapped

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

SEMESTER-IV										
INTERNSHIP										
		Category: INT								
Course Code	:	P24SCSI402	CIE	:	100 Marks					
Teaching Hours L:P: SDA	:	-	SEE	:	100 Marks					
Total Hours	:	13 Weeks	Total	:	200 Marks					
Credits	:	11	SEE Duration	:	3 Hrs.					

Course Objectives:

Internship/Professional practice provide students the opportunity of hands-on experience that include personal training, time and stress management, interactive skills, presentations, budgeting, marketing, liability and risk management paperwork, equipment ordering, maintenance, responding to emergencies etc. The objective are further:

- 1. To put theory into practice.
- 2. To expand thinking and broaden the knowledge and skills acquired through course work in the field.
- 3. To relate to, interact with, and learn from current professionals in the field.
- 4. To gain a greater understanding of the duties and responsibilities of a professional.
- 5. To understand and adhere to professional standards in the field.
- 6. To gain insight to professional communication including meetings, memos, reading, writing, public speaking, research, client interaction, input of ideas, and confidentiality.
- 7. To identify personal strengths and weaknesses.
- 8. To develop the initiative and motivation to be a self-starter and work independently.

Internship/Professional practice:

Students under the guidance of internal guide/s and external guide shall take part in all the activities regularly to acquire as much knowledge as possible without causing any inconvenience at the place of internship.

Seminar: Each student, is required to

- Present the seminar on the internship orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit the report duly certified by the external guide.
- The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

Course Outcomes: At the end of the course, the students will be able to

- Gain practical experience within industry in which the internship is done.
- Acquire knowledge of the industry in which the internship is done.
- Apply knowledge and skills learned to classroom work.
- Develop a greater understanding about career options while more clearly defining personal career goals.
- Experience the activities and functions of professionals.
- Develop and refine oral and written communication skills.
- Identify areas for future knowledge and skill development.
- Expand intellectual capacity, credibility, judgment, intuition.
- Acquire the knowledge of administration, marketing, finance and economics.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M.Tech in Computer Science and Engineering

ASSESSMENT STRUCTURE:

At the beginning of IV Semester of the program the students undergone the internship-Research Internship /Industrial Internship. The mandatory Research internship /Industry internship is for 14 to 20 weeks. The internship shall be considered as a head of passing and shall be considered for the award of a degree. Those, who do not take up/complete the internship shall be declared to fail and shall have to complete it during the subsequent institution examination after satisfying the internship requirements.

Research internship: A research internship is intended to offer the flavor of current research going on in the research field. It helps students get familiarized with the field and imparts the skill required for carrying out research.

Industry internship: Is an extended period of work experience undertaken by students to supplement their degree for professional development. It also helps them learn to overcome unexpected obstacles and successfully navigate organizations, perspectives, and cultures. Dealing with contingencies helps students recognize, appreciate, and adapt to organizational realities by tempering their knowledge with practical constraints.

CONTINUOUS INTERNAL EVALUATION:

CIE marks for the Internship/Professional practice report (60 marks) and seminar (40 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session by the student) by the committee constituted for the purpose by the Head of the Department and the two senior faculty members.

SEMESTER END EXAMINATION:

SEE for Internship will be conducted by the two examiners appointed by the BOS Chairman and gets the approval from the principal / COE. The SEE marks awarded to the students for the internship shall be based on the evaluation of Report, presentation skill, and question and answer session in the ratio 50:25:25.

РО СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1
CO5	3	3	3	3	2	-	-	-	-	-	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped