

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru–560074

Bachelor of Engineering PHYSICS GROUP

Scheme and Syllabus of I Semester for UG (2025 Scheme)

VISION

To empower young minds through technology, research and innovation, to produce technically competent and socially responsible professionals in higher education.

MISSION

- 1. To deliver excellence in education through innovative teaching, impactful research, and continuous skill development, preparing students to meet global challenges with technical expertise and ethical responsibility.
- To foster a transformative learning environment that integrates technology, research and practical experience, empowering students to become skilled professionals and socially conscious leaders.
- 3. To cultivate a culture of lifelong learning and professional excellence by encouraging creativity, research, and community engagement, equipping students with the skills to thrive in a dynamic world.
- 4. To provide a holistic educational experience that combines advanced technology, hands-on research, and community-focused learning, shaping students into competent, ethical professionals who contribute positively to society.

QUALITY POLICY

Rajarajeswari College of Engineering is committed to imparting quality technical education that nurtures competent, ethical professionals with global relevance. We ensure academic excellence through a dynamic, outcome-based curriculum, experienced faculty, and cutting-edge infrastructure. Continuous improvement is driven by innovation, research and strong industry collaboration. We foster holistic development and a progressive environment that supports lifelong learning, teamwork, and professional growth.

CORE VALUES

Academic Excellence, Integrity, Innovation, Global Competence, Continuous Improvement.

PROGRAM OUTCOMES (POs)

- **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- **PO2: Problem Analysis:** Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
- **PO3: Design/Development of Solutions:** Design creative solutions for complex engineering problems and design/develop systems /components / processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modeling, analysis & interpretation of data to provide valid conclusions. (WK8).
- **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modeling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- **PO6:** The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, WK7).
- **PO7: Ethics:** Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- **PO9:** Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- **PO10: Project Management and Finance:** Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- **PO11: Life-Long Learning:** Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

INDEX

Sl. No.	Course Code	Course Title	Page No.
1.	B25MCS101	Calculus and Linear Algebra	2
2.	B25PCS102	Quantum Physics and Applications	4
3.	B25EGK103	Engineering Graphics	7
4.	B25ESB104	Introduction to Electrical Engineering	10
5.	B25ESC104	Introduction to Electronics and Communication	12
6.	B25PIC105	Programming in C	14
7.	B25SSK106	Soft Skills	16
8.	B25CPL107	C Programming Lab	18
9.	B25IDL108	Innovation and Design Thinking Lab	20
10.	B25SKK109	Samskrutika Kannada	26
11.	B25BKK109	Balake Kannada	29

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Scheme of Teaching and Examinations - 2025

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the Academic Year 2025-26)

I Semester Physics Group: CSE Academic Year: 2025-26

					Teachi	ng Ho	urs / V	Veek		Exami	nation		
Sl. No	Course Category and Course Code		Course Title	TD / PSB		Tutorial	Practical	SAAE	CIE Marks	SEE Duration Hrs	SEE Marks	Fotal Marks	Credits
					L	T	P	S				•	
1.	ASC	B25MCS101	Calculus and Linear Algebra	Maths	3	2	0		50	3	50	100	4
2.	ASC(IC)	B25PCS102	Quantum Physics and Applications	PHY	3	0	2		50	3	50	100	4
3.	ESC	B25EGK103	Engineering Graphics	ME	2	0	2		50	3	50	100	3
4.	ESC	B25ESB104	Introduction to Electrical Engineering	EEE	3	0	0		50	3	50	100	3
5.	PSC	B25PIC105	Programming in C	CSE	3	0	0		50	3	50	100	3
6.	AEC NCMC	B25SSK106	Soft Skills	Humanities	1	0	0		100			100	pj
7.	PSC	B25CPL107	C Programming Lab	CSE	0	0	2		50	3	50	100	1
8.	AEC/ SDC	B25IDL108	Innovation and Design Thinking Lab(Project-based learning)	Any Dept.	0	0	2		100			100	1
9.	HSMS	B25SKK109 / B25BKK109	Samskrutika Kannada/ Balake Kannada	Humanities	1	0	0		50	1	50	100	1
				•	•		Т	OTAL	500		400	900	2(

S-(SAAE) Students Academic Activity Engagement Hours, ASC – Applied Science Course, ESC - Engineering Science Courses, IC - Integrated Course (Practical Course Integrated with Theory Course), PLC (IC) – Programming Language Course (Integrated Course), AEC - Ability Enhancement Course, AEC/SDC - Ability Enhancement Course, Skill Development course, ETC - Emerging Technology Course, TD/PSB - Teaching Department/ Paper Setting Board, HSMC - Humanity, Social Science and management Course, CIE - Continuous Internal Evaluation, SEE - Semester End Examination, PP/NP - Pass/ Not Pass.

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Scheme of Teaching and Examinations – 2025

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the Academic Year 2025-26)

I Semester Physics Group: CSE(IC), AI&ML Academic Year: 2025-26

			8	Teachi	ing Ho	urs / V	Veek	x Examination				credits		
Sl. No	and Course Code		Course Title		TD/PSB	Lecture	Tutorial	Practical	SAAE	CIE Marks	SEE Duration Hrs	SEE Marks	Fotal Marks	
					L	T	P	S						
1.	ASC	B25MCS101	Calculus and Linear Algebra	Maths	3	2	0		50	3	50	100	4	
2.	ASC(IC)	B25PCS102	Quantum Physics and Applications	PHY	3	0	2		50	3	50	100	4	
3.	ESC	B25EGK103	Engineering Graphics	ME	2	0	2		50	3	50	100	3	
4.	ESC	B25ESC104	Introduction to Electronics and Communication	ECE	3	0	0		50	3	50	100	3	
5.	PSC	B25PIC105	Programming in C	CSE	3	0	0		50	3	50	100	3	
6.	AEC NCMC	B25SSK106	Soft Skills	Humanities	1	0	0		100			100	pį	
7.	PSC	B25CPL107	C Programming Lab	CSE	0	0	2		50	3	50	100	1	
8.	AEC/ SDC	B25IDL108	Innovation and Design Thinking Lab(Project-based learning)	Any Dept.	0	0	2		100			100	1	
9.	HSMS	B25SKK109 / B25BKK109	Samskrutika Kannada/ Balake Kannada	Humanities	1	0	0		50	1	50	100	1	
							Т	OTAL	500		400	900	20	

S-(SAAE) Students Academic Activity Engagement Hours, ASC – Applied Science Course, ESC - Engineering Science Courses, IC - Integrated Course (Practical Course Integrated with Theory Course), PLC (IC) – Programming Language Course (Integrated Course), AEC - Ability Enhancement Course, AEC/SDC - Ability Enhancement Course, Skill Development course, ETC - Emerging Technology Course, TD/PSB - Teaching Department/ Paper Setting Board, HSMC - Humanity, Social Science and management Course, CIE - Continuous Internal Evaluation, SEE - Semester End Examination, PP/NP - Pass/ Not Pass.

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Scheme of Teaching and Examinations – 2025

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the Academic Year 2025-26)

	Applied Mathematics – I					Applied Physics		
Code	Title	L	T	P	Code	Title	L	T
B25MME101	Multivariable Calculus: CV & ME Stream	3	2	0	B25PCV102/202	Physics for Sustainable Structural System: CVStream	3	0
B25MEE101	Differential Calculus and Linear Algebra: EEE Stream	3	2	0	B25PME102/202			0
B25MCS101	Calculus and Linear Algebra: CSE Stream	3	2	0	B25PEC102/202			0
					B25PEE102/ 202			0
					B25PCS102/202	Quantum Physics and Applications :CS Stream	3	0
	Programme Specific Courses (PSC)				I	Engineering Science Course-I (ESC-I)		
B25CIV105/ 205		3	0	0	B25ESA104/ 204		3	
B25EME105/20	Elements of Mechanical Engineering	3	0	0	B25ESB104/204	Introduction to Electrical Engineering	3	0
B25EEE105/ 20:	5 Basics of Electrical Engineering	3	0	0	B25ESC104/204	Introduction to Electronics and Communication	3	0
B25ECE105/20		3	0	0	B25ESD104/204			0
B25PIC105/ 205		3	0	0	B25ESE104/204	Essentials of Information Technology	3	0
B25EBT105/20	5 Elements of Biotechnology	3	0	0				
B25SSA105/ 203	5 Principles of Soil Science and Agronomy	3	0	0				
	Programme Specific Course Lab (PSCL)							
B25MML107/ 2	07 Mechanics and Materials Lab	0	0	2				
B25MEL107/20	8 8	0	0	2				
B25EEL107/ 20'	7 Basic Electrical Engineering Lab	0	0	2				
B25ECL107/20	7 Basic Electronics Lab	0	0	2				
B25CPL107/20	7 C Programming Lab	0	0	2				
B25EBL107/20	7 Elements of Biotechnology Lab	0	0	2				
B25SSL107/ 207	Soil Science and Agronomy Field lab	0	0	2				

Dean-Academics Principal

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru–560074

Computer Science and Engineering Computer Science and Engineering (IC) Artificial Intelligence and Machine Learning

(2025 Scheme)

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Mathematics

SEMESTER-I											
CALCULUS AND LINEAR ALGEBRA											
Category: ASC(IC)											
Course Code	:	B25MCS101	CIE	:	50 Marks						
Teaching Hours L: T: P	:	3:2:0	SEE	:	50 Marks						
Total Hours	Total Hours : 45(L)+30(T) Total : 100 Marks										
Credits	:	4	SEE Duration	:	3Hrs						

	Course Objectives									
1.	Analyze engineering problems by applying Partial derivatives.									
2.	Familiarize the fundamentals of Vector calculus.									
3.	Understanding the importance of linear algebra.									
4.	To provide unified framework for linear equations, vector spaces.									
5.	To ensure a comprehensive understanding of linear transformations fundamental properties and applications.									

Module-1: Calculus	No. of Hours
Partial differentiation, total derivative, differentiation of composite functions, Jacobian, Statement of	
Taylor's and Maclaurin's series expansion for two variables. Maxima and minima for the function of	9
two variables.	
Module-2: Vector Calculus	No. of Hours
Scalar and vector fields, Gradient, directional derivatives, divergence and curl - physical	
interpretation, solenoidal vector fields, irrotational vector fields and scalar potential.	
Introduction to polar coordinates and polar curves. Curvilinear coordinates: Scale factors, base	9
vectors, Cylindrical polar coordinates, Spherical polar coordinates, transformation between cartesian	
and curvilinear systems, orthogonality.	
Module- 3: System of Linear Equations, Eigenvalues and Eigenvectors	No. of Hours
Elementary row transformation of a matrix, Echelon form, rank of a matrix. Consistency, solution of	
system of linear equations: Gauss elimination method. Applications: Traffic flow. Eigenvalues and	9
Eigenvectors, modal matrix, diagonalization of the matrix.	
Module- 4: Vector Space	No. of Hours
Vector spaces: definition and examples, subspace: definition and examples. Linear Combinations,	
linear span, linearly independent and dependent sets, basis and dimension, row space and column	9
space of a matrix, Coordinate vector, inner products and orthogonality.	
Module- 5: Linear Transformation	No. of Hours
Definition and examples, algebra of linear transformations, matrix of a linear transformation.	
Singular, non singular linear transformations and invertible linear transformations. Rank and nullity	9
of linear transformations, Rank-Nullity theorem.	

Course	Course Outcomes: At the end of the course, the students will be able to								
CO1	Apply the concepts of multivariable calculus and vector calculus to compute derivatives, optimize functions,								
	and analyze vector fields for applications in computer science engineering.								
CO2	Solve system of linear equations and determine eigenvalues and eigenvectors using direct and iterative								
	methods.								
CO3	Apply the concepts of vector spaces and linear transformations to problems in computer science engineering.								
CO4	Demonstrate the applications of computer science and allied engineering Science using modern ICT tools.								

Text Bo	oks
1.	B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44 th Edition, 2021.
2.	Gilbert Strang, Linear Algebra and its Applications, Cengage Publications, 4 th Edition, 2022.
3.	Seymour Lipschutz and Marc Lipson, Linear Algebra, Schaum's outlines series, 4 th Edition, 2008.

Referen	Reference Text Books								
1.	V. Ramana, Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017								
2.	James Stewart, Calculus, Cengage Publications, 7 th Ed., 2019.								
3.	David Poole, Linear Algebra, a modern introduction, Cengage publishers, 4 th Ed., 2014.								

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Mathematics

Web links and Video lectures (e-Resources)

- https://nptel.ac.in/courses/111106135
- https://nptel.ac.in/courses/111105160
- https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/

ASSESSMENT STRUCTURE:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage. To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks. To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks. Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	weightage	Total Marks							
Theory	Internal Assessment1	50	Average of Best two								
	Internal Assessment2	ssessment2 50 Assessments, scale down to									
	Internal Assessment3	50	40	50							
CCA	Two Assignments / practicing the problems	10	05								
	Lab activity	10	05								
SEE	Semester End Examination	100	50	50							
	Grand Total										

SEMESTER END EXAMINATION (SEE):

- 1. The Question paper for each course contains two parts, Part A and Part B.
- 2. Part A consists of **Short Answer Questions** (2 Marks/1 mark) for 20 marks covering the complete syllabus and it is compulsory. Multiple Choice Questions are not allowed.
- 3. Part B consists of 10 questions, two questions of 16 marks (with max. of 3 sub questions) from each module with internal choice. Students shall answer five full questions, selecting one full question from each module.

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
/ (0											
CO1	3	2	1	2	1	-	-	-	-	-	2
CO2	3	2	1	2	1	-	-	-	-	-	2
CO3	3	2	1	2	1	-	-	-	-	-	2
CO4	3	2	1	2	1	-	-	-	-	-	2

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Course Code	Course Title		Teaching and Learning Structure							
		Classroom instruction (CI) in hours / semester		Lab instruction (LI) in hours / semester	Term work (TW) and self learning (SL) in hours /sem	Total no. of hours/sem	Total Credits			
		L T		P	SAAE					
B25MCS101 (L:T:P:S 3:2:0:3)	Calculus and Linear Algebra	45	30	0	45	120	4			

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Physics

SEMESTER-I								
QUANTUM PHYSICS AND APPLICATIONS								
		Category: ASC(IC						
Course Code	:	B25PCS102	CIE	:	50 Marks			
Teaching Hours L : T : P : 3:0:2 SEE : 50 Marks								
Total Hours : 45(T)+26(P) Total : 100 Marks								
Credits	:	4	SEE Duration	:	3Hrs			

	Course Objectives
1.	To introduce the foundations of quantum mechanics, including wave-particle duality, uncertainty principle,
	Schrödinger's equation, and tunneling, and to relate them to real-world computational and physical systems.
2.	To analyze the electrical properties of materials, using classical and quantum models to understand
	conductivity, density of states, carrier concentration, Fermi energy, and the Hall effect in metals and
	semiconductors.
3.	To explain the principles of superconductivity, such as critical parameters, Meissner effect, Cooper pair
	formation, Josephson junctions, and SQUIDs, along with their relevance in advanced quantum systems.
4.	To explore light-matter interactions and photonics, covering lasers, optical fibers, photo detectors, and
	interferometers, with applications in communication and sensing technologies.
5.	To introduce the fundamentals of quantum computing, including qubits, Bloch sphere representation, quantum
	gates, and simple circuit simulations, preparing students for emerging quantum technologies.

Module– 1	No. of Hours
Quantum Mechanics: de Broglie Hypothesis, Heisenberg's Uncertainty Principle and its application (Non-existence of electrons inside the nucleus), Principle of Complementarity, Wave Function, Time independent Schrödinger wave equation (Derivation), Physical significance of a wave function and Born Interpretation, Expectation value and its physical significance, Eigen functions and Eigen values, Particle inside one dimensional infinite potential well, Role of higher dimensions (Qualitative), Waveforms and Probabilities, quantum tunneling, Numerical Problems.	9
Module- 2	No. of Hours
Electrical Properties of Metals and Semiconductors: Classical free electron theory (Assumption and failures) Mechanisms of electron scattering in solids, Matheissen's rule, Assumptions of Quantum Free Electron Theory, Density of States, Fermi Dirac statistics, Fermi Energy, Variation of Fermi Factor With Temperature and Energy, Merits of Quantum Free Electron Theory, Derivation of electrical conductivity in an intrinsic semiconductor, Expression for electron concentration in conduction band and hole concentration in valence band (Expressions only), Fermi level for intrinsic (with derivation) and extrinsic semiconductor (no derivation), Relation between Fermi energy and energy gap in intrinsic semiconductor, Hall effect, Numerical Problems.	9
Module-3	No. of Hours
Superconductivity: Variation of resistance with temperature, Zero resistance state, Meissner effect, Critical temperature, Critical field, Formation of Cooper pairs - Mediation of phonons, Two-fluid model, BCS Theory - Phase coherent state, Limitations of BCS theory, Examples of systems with low and high electron-phonon coupling, Type-I and Type-II superconductors, Formation of Vortices, Explanation for upper critical field, Cooper pair Tunneling (Andreev reflection), Josephson junction, Flux quantization, DC and AC SQUID, Numerical Problems.	9
Module- 4	No. of Hours
Photonics : Interaction of radiation with matter — Einstein's A and B coefficients, Prerequisites for lasing actions, Population inversion and metastable states, Types of LASER — Semiconductor diode LASER, Applications of laser in barcode scanner and laser printing, Photo diode, working and applications, Avalanche Diode, Superconducting Nanowire Single Photon Detector, Optical fiber, Derivation of Numerical aperture, Types of optical fibers, V-number, Number of modes, Mechanism of attenuation in optical fiber, Application of optical fiber in point to point communication system, Numerical problems.	9
Module- 5	No. of Hours
Quantum Computing: Moore's law - limitation of VLSI, Classical v/s Quantum Computation, bit, Qubit and its properties, Bloch Sphere, Dirac notation, Brief discussion on types of qubit, Superconducting qubits, Harmonic oscillator (qualitative) – Need for anharmonicity, Charge qubit, Quantum Gates – Pauli Gates, Phase gate (S, T), Hadamard Gate, Two qubit gates – CNOT gate, Predicting the outputs of various combinations of single and two-qubit gates, Numerical Problems.	9

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Physics

LABORATORY

Practical Component of IPCC (10 Experiments)

Sl. No	List of experiments
1.	Determination of wavelength of LASER using Diffraction Grating.
2.	Determination of acceptance angle and numerical aperture of the given Optical Fiber.
3.	Study the Characteristics of a Photo-Diode and to determine the power responsivity / Verification of Inverse Square Law of Light.
4.	Determination of Planck's constant using LEDs.
5.	Determination of Fermi Energy of Copper.
6.	Determination of Energy gap of the given Semiconductor.
7.	Black-Box Experiment (Identification of basic Electronic Components).
8.	Resonance in LCR circuit.
9.	Characteristics of a Bipolar Junction Transistor.
10.	Determination of resistivity of a semiconductor by Four Probe Method.
11.	Predicting the outputs of various combinations of single and two-qubit gates using QUIRK Quantum Simulator.
12.	Predicting the outputs of various combinations of single and two-qubit gates using QUISKIT.
13.	Air-wedge / Newtons to study the interference by the division of amplitude.
14.	Data Analysis using Spread Sheet.

Course	Outcomes: At the end of the course, the students will be able to
CO1	Explain the core concepts of quantum mechanics such as matter waves, uncertainty principle, wave functions,
	and quantization of energy, with relevance to computational applications
CO2	Analyze the behavior of electrons in metals and semiconductors using classical and quantum models to derive
	key material properties such as conductivity and carrier concentration
CO3	Evaluate the principles and characteristics of superconductivity, including Meissner's effect, critical
	parameters, and Cooper pair formation, and their relevance in quantum systems
CO4	Interpret the interaction of radiation with matter and the operational principles of photonic devices such as
	lasers, optical fibers, and photo detectors
CO5	Summarize the basic concepts of quantum computing including qubits, quantum gates, and quantum logic,
	and predict simple outcomes using theoretical circuit models

Text Bo	Text Books								
1.	Engineering Physics, Satyendra Sharma and Jyotsna Sharma, Pearson, 2018								
2.	Engineering Physics, S L Kakani, Shubra Kakani, 3 rd Edition, 2020, CBS Publishers and Distributers Pvt								
3.	Solid State Physics, S. O. Pillai, New Age International								
4.	Quantum Computing, Parag. K. Lala, McGraw Hill, 2020.								

Referen	Reference Text Books							
1.	Beiser, A. (2002). Concepts of Modern Physics (6 th edition). McGraw-Hill Education							
2.	Griffiths, D. J. (2018). Introduction to Quantum Mechanics (2 nd or 3 rd edition). Pearson.							
3.	Tinkham, M. (2004). Introduction to Superconductivity (2 nd edition). Dover Publications.							
*** 1 10	1 1571 1 4 / D							

Web links and Video lectures (e-Resources)

- https://nptel.ac.in/courses/115106066
- https://nptel.ac.in/courses/115106127
- https://www.youtube.com/watch?v=SHoGV-sezNI
- https://digimat.in/nptel/courses/video/115105131/L01.html
- https://nptel.ac.in/courses/108106135/03
- https://nptel.ac.in/courses/108108174/05

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Physics

ASSESSMENT STRUCTURE:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage. To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks. To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks. Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	weightage	Total Marks				
Theory	Internal Assessment1	50	Average of Best two					
	Internal Assessment2	50	Assessments, scale down to					
	Internal Assessment3	50	40	50/2 = 25				
CCA	Two Assignments	20	10					
Laboratory	Record &Observation	Evaluating each	10	25				
		expt. for 10 marks						
	Lab Internal Test	50	15					
SEE	Semester End Examination	100	50	50				
	Grand Total							

SEMESTER END EXAMINATION (SEE):

- 1. The Question paper for each course contains two parts, Part A and Part B.
- 2. Part A consists of **Short Answer Questions** (2 Marks/1 mark) for 20 marks covering the complete syllabus and it is compulsory. Multiple Choice Questions are not allowed.
- 3. Part B consists of 10 questions, two questions of 16 marks (with max. of 3 sub questions) from each module with internal choice. Students shall answer five full questions, selecting one full question from each module.

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	1	2	1	1	-	1	-	1	1
CO2	3	1	1	2	1	1	-	1	-	1	1
CO3	3	1	1	2	1	1	-	1	-	1	1
CO4	3	1	1	2	1	1	-	1	-	1	1
CO5	3	1	1	2	1	1	-	1	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Course Code	Course Title	Teaching and Learning Structure							
		Classroom		Lab	Term Work (TW)	Total no.	Total		
		Instruction (CI)		Instruction	and Self Learning	of	Credits		
		in hours /		(LI) in hours	(SL) in hours / Sem	hours/sem			
		Semester		/ semester					
		L T		P	SAAE				
B25PCS102 (L:T:P:S 3:0:2:3)	Quantum Physics and Applications	45	00	26	50	120	4		

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Mechanical Engineering

SEMESTER-I									
ENGINEERING GRAPHICS									
	Category: ESC								
Course Code	:	B25EGK103	CIE	:	50 Marks				
Teaching Hours L: T: P	Teaching Hours L : T : P : 2:0:2								
Total Hours : 30(T)+30(P) Total : 100 Marks									
Credits	:	3	SEE Duration	:	3Hrs				

	Course Objectives
1.	To construct orthographic projections of points, lines, planes, and solids using manual drafting methods and computer-aided tools.
	1
2.	To construct orthographic projections of solids and apply them to real-world engineering applications
3.	To develop and construct the lateral surfaces of solids and apply them to real-world engineering applications.
4.	To draw isometric views of objects and convert isometric drawings into corresponding orthographic
	projections.
5.	To create basic 3D models of engineering components and parts using appropriate tools.

Module– 1	No. of Hours
Introduction: Significance of Engineering drawing, BIS Conventions of Engineering Drawing, Free hand sketching of engineering drawing, Scales. Introduction to Computer Aided Drafting software, Co-ordinate system and reference planes HP, VP, RPP & LPP of 2D/3D environment. Selection of drawing sheet size and scale. Commands and creation of Lines, coordinate points, axes, polylines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet and curves. Orthographic Projections of Points, Lines and Planes: Introduction to Orthographic projections, Orthographic projections of points in 1st and 3rd quadrants. Orthographic projections of lines (Placed in First quadrant only as per BIS) Orthographic projections of planes: triangular, square, rectangular, pentagonal, hexagonal and circular lamina (Placed in First quadrant only using change of position method).	10
Module- 2	No. of Hours
Orthographic Projection of Solids: Orthographic projection of right regular solids (Resting on HP only and inclined to both the planes); Prisms, Pyramids, Cylinders & Cones.	10
Module-3	No. of Hours
Section of Solids: Introduction, Section planes, Sectional views: apparent shapes and true shapes, Sections of right regular prisms, pyramids, cylinders and cones resting with their base on HP. (Concepts only and No Problems for practice) Development of Lateral Surfaces of Solids: Development of lateral surfaces of right regular Prisms, Pyramids, Cylinders & Cones and their frustums and truncations. Problems on applications of development of lateral surfaces like funnels and trays.	9
Module- 4	No. of Hours
Isometric Views: Introduction to Isometric views, Isometric projections, Isometric scale. Isometric view of hexahedron (cube), right regular prisms, pyramids, cylinders, cones and spheres, Isometric view of combination of two simple solids, step block. Conversion of simple isometric drawings into orthographic views: Problems on conversion of Isometric view of simple objects / engineering components into orthographic views.	9
Module-5	No. of Hours
Computer Network Drawing (For CIE Only): 2D Network drawing with wired and wireless, Network topology - wired and wireless. 3D Modeling: Raspberry Pi / Arduino boards, Router & switches, IoT devices - Concept of converting to 3D printing format (stl) Concept of Industrial drawing	7

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Generate orthographic projections of points, lines, planes, and solids manually and with computer aided tools.						
CO2	Develop the lateral surfaces of solids for real-world applications.						
CO3	Draw isometric views and convert isometric drawings to orthographic views.						
CO4	Create 3D models of embedded, networking, and IoT devices.						

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Mechanical Engineering

Ī	Text Bo	oks
	1.	K. R. Gopalakrishna, &SudhirGopalakrishna: A Textbook of Computer Aided Engineering Drawing, 39 th Edition, Subash Stores, Bangalore, 2017
	2.	Bhatt, N.D., Engineering Drawing: Plane and Solid Geometry, 53 rd Edition, Charotar Publishing House Pvt. Limited. 2023.

Reference Text Books						
1.	S. N. Lal and T. Madhusudhan, Engineering Visualisation, engage Learning India Pvt. Ltd.; 1st Edition, 2022					
2.	P.J. Shah, Computer Aided Engineering Drawing, S. Chand Publishing, 2021					

Web links and Video lectures (e-Resources)

- https://nptel.ac.in/courses/112104172
- https://nptel.ac.in/courses/112102304
- https://nptel.ac.in/courses/112105294

ASSESSMENT STRUCTURE:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage. To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks. To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks. Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max.	weightage	Total Marks
		Marks		
Activity	Sketch Book		20	
Theory	Internal Assessment1	50	Average of two	
	Internal Assessment2	50	assessments scale down to 15	50
CCA	Laboratory Test	50	15	
SEE	Semester End Examination	100	50	50
	Grand To	otal		100

SEMESTER END EXAMINATION (SEE):

- 1. SEE shall be conducted in batches similar to practical's and evaluated for maximum of 100 Marks. Obtained marks shall be accounted for SEE final marks, reducing it by 50%.
- 2. Two full questions shall be set from Modules 1, 2, 3 and 4. Students need to answer one full question from each module. Two full questions set from each Module shall cover the entire topic of the respective module.
- 3. SEE shall be conducted by one Internal and one External Examiner. Evaluation shall be carried out jointly by both the examiners. The student may be awarded full marks, if he/she completes a solution on computer display without sketch.

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	1	2	2	1	-	1	-	1	-
CO2	2	1	1	3	2	1	-	1	-	1	-
CO3	2	1	1	3	2	1	-	1	-	1	-
CO4	2	1	1	2	2	1	-	1	-	1	-
CO5	3	1	1	2	2	1	-	1	-	1	-

Level 3 - High, Level 2 - Moderate, Level 1 - Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Mechanical Engineering

Course Code	Course Title	Teaching and Learning Structure					
		Classroom Instruction (CI) in hours per semester		Lab Instruction (LI) in hours per semester	Term work (TW) and self learning (SL) in hours/sem	Total no. of hours/sem	Total Credits
		L T		P	SAAE		
B25GCS103 (L:T:P:S- 2:0:2:2)	Engineering Graphics	30	00	30	30	90	3

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Electrical and Electronics Engineering

SEMESTER-I							
INTRODUCTION TO ELECTRICAL ENGINEERING							
	Category: ESC						
Course Code	:	B25ESB104	CIE	:	50 Marks		
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks		
Total Hours	:	45(T)	Total	:	100 Marks		
Credits	:	3	SEE Duration	:	3Hrs		

	Course Objectives						
1.	To explain the power generation concepts and laws used in the analysis of DC circuits.						
2.	To explain the behavior of circuit elements in single-phase and three phase circuits.						
3.	To describe the construction and operation DC machines and Transformers.						
4.	To describe the application of renewable energy and introduction to EV.						
5.	To describe domestic wiring and safety measures.						

Module– 1	No. of Hours
Introduction: Conventional and non-conventional energy resources; General structure of electrical power systems using single line diagram approach. Power Generation: Hydel, Nuclear, Solar & Wind power generation (Block Diagram approach). DC Circuits: Ohm's Law and its limitations, KCL & KVL, Series, Parallel, Series- Parallel circuits. Simple Numerical.	9
Module- 2	No. of Hours
Single Phase Circuits: Voltage and current relationship with phasor diagrams in R, L, and C circuits, Concept of Impedance, Analysis of R-L, R-C, R-L-C Series circuits, Active power, Reactive power and Apparent power, Concept of power factor. Three Phase Circuits: Generation of Three phase AC quantity, Advantages and limitations; Star and Delta connection, Relationship between line and phase quantities	9
Module-3	No. of Hours
DC Machines: DC Generator: Principle of operation, Constructional details, Induced EMF expression, Types of generators, Relation between induced EMF and terminal voltage, simple numericals on EMF equation, DC Motor: Principle of operation, Back EMF and its significance, Types of motors, characteristics and speed control (armature & field) of DC motors (series & shunt only), Torque equation, Applications of DC motors Transformers: Necessity of transformer, Principle of operation, Types and construction of single phase transformers, EMF equation, Losses of transformer, Efficiency, Simple numerical on Losses and Efficiency	9
Module- 4	No. of Hours
Applications of Renewable energy: Photovoltaic Systems, Solar distillation; Solar Pond electric power plant, Off grid solar inverter, Urban waste to energy conversion, Hydrogen based transportation system Introduction to EV: History, General block diagram, Application and Benefits	9
Module-5	No. of Hours
Domestic Wiring: Requirements, Types of wiring: casing, capping. Two way and three way control of load. Domestic Safety: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits, Electric Shock, Earthing and its types, Safety Precautions to avoid shock Electricity bill: Power consumption of electrical energy, Two-part electricity tariff, Case study on calculation of electricity bill for domestic consumers.	9

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Understand the concepts of power generation and solve DC circuit problems.						
CO2	Analyze single-phase circuits, solve R-L,R-C, and R-L-C circuits and comprehend three-phase circuit principles.						
CO3	Understand DC machines, transformers and their characteristics.						
CO4	Understand the application of renewable energy and basics of EV.						
CO5	Understand domestic wiring and safety measures.						

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Electrical and Electronics Engineering

Text	t Bo	oks
1.		D C Kulshreshtha, Basic Electrical Engineering, Tata McGraw Hill, 1st Edition2019

Referen	Reference Text Books								
1.	B.L. Theraja, A text book of Electrical Technology, S Chand and Company, reprint edition 2014.								
2.	G D Rai, Nonconventional Energy sources, , Khanna Publication, 4 th Edition, 1988								
3.	D. P. Kothari and I. J. Nagrath, Basic Electrical Engineering, , Tata McGraw Hill 4 th edition, 2019.								
4.	V. K. Mehta, Rohit Mehta, Principles of Electrical Engineering & Electronics, S. Chand and Company								
	Publications, 2 nd edition, 2015.								
5.	Rajendra Prasad, Fundamentals of Electrical Engineering, PHI, 3 rd edition, 2014.								

ASSESSMENT STRUCTURE:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage. To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks. To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks. Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	weightage	Total Marks				
Theory	Internal Assessment1	50	Average of Best two Assessments,					
	Internal Assessment2	50	scale down to 40					
	Internal Assessment3	50		50				
CCA	Two Assignments / Project	20	10					
SEE	Semester End Examination	100	50	50				
Grand Total								

SEMESTER END EXAMINATION (SEE):

- 1. The Question paper for each course contains two parts, Part A and Part B.
- 2. Part A consists of **Short Answer Questions** (2 Marks/1 mark) for 20 marks covering the complete syllabus and it is compulsory. Multiple Choice Questions are allowed.
- 3. Part B consists of 10 questions, two questions of 16 marks (with max. of 3 sub questions) from each module with internal choice. Students shall answer five full questions, selecting one full question from each module.

CO-PO Mapping:

PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
	CO											
CO1		1	2	2	2	1	-	-	-	1	-	1
CO2		1	2	2	2	1	-	-	-	1	-	1
CO3		1	3	3	2	1	-	-	-	2	-	1
CO4		1	3	3	2	1	-	-	-	2	-	1
CO5		1	3	3	2	1	-	-	-	2	-	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Course Code	Course Title	Teaching and Learning Structure							
		Instruct in he	sroom tion (CI) ours /	Lab Instruction (LI) in hours / Semester	Term work (TW) and self learning (SL) in hours / sem	Total no. of hours/sem	Total Credits		
		L T		P	SAAE				
B25ESB104 (L:T:P:S 3:0:0:3)	Introduction to Electrical Engineering	45	00	00	45	90	3		

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Electronics and Communication Engineering

SEMESTER-I										
INTRODUCTION TO ELECTRONICS AND COMMUNICATION										
Course Code	Category: ESC Course Code : B25ESC104 CIE : 50 Marks									
Teaching Hours L : T : P	:	3:0:0	SEE	:	50 Marks					
Total Hours : 45(T) Total : 100 Marks										
Credits	:	3	SEE Duration	:	3Hrs					

	Course Objectives							
1.	To study the operation of Semiconductor diode, Zener diode and their applications.							
2.	To study the operation of linear Op-amps and its applications							
3.	To study the Basic Logic gates, circuits and their optimization.							
4.	To study the Principles of Communication system.							
5.	To study the operation of embedded system and its classification.							

Module– 1	No. of Hours
Diode Theory: PN Junction Diode, Load line analysis, Series- diode configuration. Sinusoidal inputs - half wave rectification, Full wave Rectification, voltage multiplier Circuits, Zener Diodes. Bipolar Junction Transistor: Introduction, Common Base Configuration, Common Emitter Configuration. <i>Text book:</i> 1	9
Module- 2	No. of Hours
Operational amplifier —Operational amplifier basics, practical Op-Amp circuits, Op-Amp specification —DC offset parameter, frequency parameter, Differential and common mode operation. Practical Op-Amp circuits—Inverting amplifier, non-inverting amplifier, Unity follower, Summing amplifier, Integrator, Differentiator. <i>Text book: 1</i>	9
Module-3	No. of Hours
Number Systems: Binary numbers, Number Base Conversion, Octal & Hexadecimal Numbers, Complements (1's & 2's Complements). Boolean Algebra and Logic Circuits: Basic definitions, Axiomatic Definition of Boolean Algebra, Basic Theorems and Properties of Boolean Algebra, Boolean Functions, Canonical and Standard Forms, Other Logic Operations, Digital Logic Gates. Combinational logic: Introduction, Design procedure, Adders- Half adder, Full adder. <i>Text book:</i> 2	9
Module- 4	No. of Hours
Communication scheme: Elements of a Communication System, Need for Modulation, Amplitude Modulation, Frequency Modulation, Phase modulation, Comparison of FM& PM, Comparison of FM and AM. <i>Text book:</i> 3	9
Module-5	No. of Hours
Embedded systems: Definition, Embedded systems vs general computing systems, Classification of Embedded Systems, Major application areas of Embedded Systems, Purpose of Embedded System, Core of the Embedded System: Microprocessors, GPP Vs ASIP, Microcontrollers, Microprocessor Vs Microcontroller, DSP, RISC Vs CISC, Memory: ROM, Sensors, Actuators, LED, 7-Segment LED display. <i>Text book:</i> 4	9

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Analyze basic electronic circuits using the principles of rectifiers, voltage regulators.						
CO2	Apply the knowledge on working principle of Operational amplifier.						
CO3	Apply the concepts of Boolean Algebra and Logic Circuits.						
CO4	Apply the concepts of embedded systems, sensors and interfacing.						
CO5	Apply the concepts of analog and digital communication schemes.						

Text Bo	Text Books									
1.	Electronic Devices and Circuit Theory, Robert L Boylestad and Louis Nashelsky, 11th Edition, Pearson									
	Education, 2013, ISBN: 978-93-325-4260-0.									
2.	Digital Design, M Moris Mano, 5 th Edition, Prentice Hall of India									
3.	Electronics communication systems, George Kennedy, 5 th Edition, TataMcGraw hill.									
4.	Introduction to embedded systems, Shibu K V,2 nd Edition, Mc Graw Hill									

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Electronics and Communication Engineering

Web links and Video lectures (e-Resources)

- 1. https://nptel.ac.in/courses/122106025
- 2. https://nptel.ac.in/courses/108105132
- 3. https://nptel.ac.in/courses/117104072

ASSESSMENT STRUCTURE:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage. To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks. To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks. Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	weightage	Total Marks
Theory	Internal Assessment1	50	Average of Best two	
	Internal Assessment2	50	Assessments, scale down to	
	Internal Assessment3	50	40	50
CCA	Two Assignments / Project	20	10	
SEE	Semester End Examination	100	50	50
	100			

SEMESTER END EXAMINATION (SEE):

- 1. The Question paper for each course contains two parts, Part A and Part B.
- 2. Part A consists of **Short Answer Questions** (2 Marks/1 mark) for 20 marks covering the complete syllabus and it is compulsory. Multiple Choice Questions are not allowed.
- 3. Part B consists of 10 questions, two questions of 16 marks (with max. of 3 sub questions) from each module with internal choice. Students shall answer five full questions, selecting one full question from each module.

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	3	2	-	-	2	-	-	1	-	1
CO2	3	2	3	2	-	1	-	-	1	-	1
CO3	3	2	3	1	-		-	-	1	-	1
CO4	2	1	1	1	2	1	-	-	1	-	1
CO5	2	1	1	-	1	1	-	-	1	-	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Course	Course Title		Teaching and Learning Structure					
Code		Classroom Instruction (CI) in hours / Semester		Lab Instruction (LI) in hours / Semester	Term work (TW) and self learning (SL) in hours / sem	Total no. of hours/sem	Total Credits	
		L	T	P	SAAE			
B25ESC104	Introduction to	45	00	00	45	90	3	
(L:T:P:S	Electronics and							
3:0:0:3)	Communication							

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

SEMESTER-I							
	PROGRAMMING IN C						
	Category: PSC						
Course Code	:	B25PIC105	CIE	:	50 Marks		
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks		
Total Hours	:	45(T)	Total	:	100 Marks		
Credits	:	3	SEE Duration	:	3Hrs		

	Course Objectives						
1.	To learn fundamental concepts of C programming.						
2.	To learn concepts of decision statements and basic data structure.						
3.	Able to implement programs by user define statements.						
4.	Able to design a model by using structures and unions.						
5.	Able to design and implement the real time scenarios by using various data types and data structures.						

Module– 1	No. of Hours
Fundamentals to Computer: Introduction to computers, Generation and its Characteristics, program design tools: Algorithms, Flowcharts, Pseudocode. Overview of C: Introduction to C, Structure of C program, Files used in a C program, Compilers, Compiling and executing C programs. Expressions: Data Types, variables, constants, Input/output statements in C, Types of errors.	9
Module- 2	No. of Hours
Expressions (Conti): Operators in C, Type conversion and typecasting. Decision control and looping statements: Introduction to decision control, Conditional branching statements, iterative statements, nested loops, break and continue statements, goto statement.	9
Module- 3	No. of Hours
Functions: Introduction using functions, Function definition, function declaration, function call, return statement, passing parameters to functions, scope of variables, storage classes, recursive functions. Arrays: Declaration of arrays, accessing the elements of an array, storing values in arrays, Operations on arrays: Traversing, Searching and sorting, Passing arrays to functions, applications of arrays.	9
Module- 4	No. of Hours
Strings: Declaration and Initialization, String Input / Output functions, String manipulation functions. Pointers: Introduction to pointers, Declaration of pointer variables, Types of pointers, passing arguments to functions using pointers.	9
Module- 5	No. of Hours
Structure, Union, Enumerated Data Type and Files: Introduction to structure, Declaration and Initialization, Array of structures, Nested structure, Introduction to Unions, Declaration and Initialization, differentiate between structure and union, Enumerated data type. File management in C: File Operations-open, close, read, write, append, simple program on reading and writing data files.	9

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Understanding the basic concepts of computers and c programming.						
CO2	Knowing the concepts of expression & control statements.						
CO3	Illustrate user defined data structures like arrays and functions for solving problems.						
CO4	Understand the concepts of strings and pointers.						
CO5	Make use of structures, union, and I/O files operations.						

Text Bo	oks						
1.	ReemaThareja, "Computer fundamentals and programming in C", Oxford University, 2 nd edition, 2017.						
Referen	ce Text Books						
1.	E. BalaGuruswamy, "Programming in ANSI C", 7th Edition, Tata McGraw-Hill.						
2.	Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, 2 nd Edition, Prentice Hall of						
	India.						

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

3.	ReemaThareja, Programming in C, 3 rd Edition, Oxford University Press, 2023.
4.	YashwanthKanethkar, "Let us C", 13th Edition, BPB Publications.

Web links and Video lectures (e-Resources)

- elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html
- Introduction to Programming in C [https://onlinecourses.nptel.ac.in/noc23 cs02/preview]
- C for Everyone: Programming Fundamentals [https://www.coursera.org/learn/c-for-everyone]
- Computer Programming Virtual Lab [https://cse02-iiith.vlabs.ac.in/exp/pointers/]

ASSESSMENT STRUCTURE:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage. To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks. To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks. Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	weightage	Total Marks
Theory	Internal Assessment1	50	Average of Best two	
	Internal Assessment2	50	Assessments, scale down to	
	Internal Assessment3	50	40	50
CCA	Two Assignments / Project	20	10	
SEE	Semester End Examination	100	50	50
	100			

SEMESTER END EXAMINATION (SEE):

- 1. The Question paper for each course contains two parts, Part A and Part B.
- 2. Part A consists of **Short Answer Questions** (2 Marks/1 mark) for 20 marks covering the complete syllabus and it is compulsory. Multiple Choice Questions are not allowed.
- 3. Part B consists of 10 questions, two questions of 16 marks (with max. of 3 sub questions) from each module with internal choice. Students shall answer five full questions, selecting one full question from each module.

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	-	1	-	-	2	1	-	-	1	-	-
CO2	-	1	-	-	2	1	-	-	1	-	-
CO3	-	2	-	-	2	2	-	-	1	-	1
CO4	-	2	-	-	2	2	-	-	1	-	1
CO5	-	2	-	-	2	2	-	-	1	-	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Course	Course Title		Teaching and Learning Structure						
Code		Classroom		Lab	Term work (TW) and	Total no.	Total		
		Instruct	tion (CI)	Instruction	self learning (SL) in	of	Credits		
		in ho	ours /	(LI) in hours	hours / sem	hours/sem			
		Sem	nester	/ Semester					
		L	T	P	SAAE				
B25PIC105	Programming in C	45	00	00	45	90	3		
(L:T:P:S									
3:0:0:3)									

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Humanities

		SEMESTER	R-I			
		SOFT SKIL	LS			
		Category: A	EC			
Course Code	:	B25SSK106	CIE	:		100 Marks
Teaching Hours L: T: P	:	1:0:0	SEE	:		
Total Hours	:	15	Total	:		100 Marks
Credits	:	PP	SEE Duration	:		
Module- 1: Social Skills						
Communication: Principles of c	lear	and effective exchange	of ideas in profession	nal and so	oc:	ial
contexts.		8	1			
Persuasion: Techniques to influen	ce a	nd convince through logic	al, emotional, and ethic	cal appeals.		3
Self-Awareness: Identifying perso	nal	strengths, weaknesses, opp	ortunities, and challen	ges.		
Active Listening: Paraphrasing, qu	ıesti	oning techniques, and den	nonstrating attentivenes	SS.		
	Mo	dule-2: Emotional Skills	s I			No. of Hours
Emotional Intelligence (EI):	Rec	ognizing and managing	emotions, empathy	y, relation	ısh	iip
management, and conflict resolution	n.					
Stress Management: Identifying	stre	ss triggers, relaxation tecl	nniques, work-life bala	ance strate	gi	es,
and mindfulness practices.						3
Time Management: Prioritizat			setting SMART ge	oals, avoi	idi	ng 3
procrastination, and effective sched						
Adaptability & Resilience: Hand	ing	change, bouncing back fro	m setbacks, and devel	oping a gro	ow	rth
mindset.						
		dule-3: Emotional Skills				No. of Hours
Ambition & Goal Setting: Defin			aspirations, creating	SMART g	oa	ls,
and aligning actions with long-term						
Sympathy & Empathy: Understa			differentiating between	en the two,	, a	nd 3
applying them in workplace and so						
Creativity & Innovation: Generating original ideas, problem-solving, and applying creative thinking						
techniques (mind-mapping, SCAM						
		lule- 4: Professional Skil			_	No. of Hours
Problem Solving: Identifying ro			, and implementing s	solutions u	1S1	ng
methods like 5 Whys and Fishbone Diagram.					3	
Discipline: Building consistency, accountability, and professional habits.						
Time Management: Prioritizing tasks (Eisenhower Matrix), scheduling, avoiding procrastination.						
		ule-5: Professional Skill		1 1:		No. of Hours
Collaboration & Teamwork: W	orki	ng effectively in diverse	teams, tostering trust,	and achie	V1	ng
shared goals.	~	1 1100				2
Negotiation & Conflict Resolutio						3
	mol	uze evaluate and conthect			an	0.0
Critical Thinking: The ability to a decisions.	ınaı.	yze, evaluate, and synthesi	ze information to make	e well-reas	OII	eu

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Apply social skills for clear communication, persuasion, self-awareness, and active listening.						
CO2	Use emotional skills to build confidence, manage stress, and adapt to change.						
CO3	Set ambitious goals, practice empathy, and apply creativity for problem-solving						
CO4	Demonstrate discipline, time management, and structured problem-solving.						
CO5	Work in teams, negotiate, resolve conflicts, and think critically.						

Text Bo	Text Books						
1.	Oxford Advance Learners Dictionary						
2.	Cambridge English Skills Real Listening and Speaking by Miles Craven						
3.	Communicative English for Professionals by Nitin Bhatnagar and MamtaBhatnagar						

Web links and Video lectures (e-Resources)

- Google Docs + Voice Typing https://docs.google.com LearnEnglish https://learnenglish.britishcouncil.org/ TakeIELTS https://www.britishcouncil.in/exam/ielts

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Humanities

ASSESSMENT STRUCTURE (CIE only):

Activity1: Theory / **Practical** session is held every week as per the time table and the performance of the student is evaluated in every session for 10 marks. The sum of all the session activities marks is considered for 100 marks.

Course Code	Course Title	Teaching and Learning Structure						
		Classroom		Lab	Term Work (TW)	Total no.	Total	
		Instruction (CI) in		Instruction	and Self Learning	of	Credits	
		hours / Semester		(LI) in hours	(SL) in hours / Sem	hours/sem		
				/ semester				
		L	T	P	SAAE			
B25SSK206	Soft Skills	15	00	00	15	30	PP	
(L:T:P:S								
1:0:0:1)								

CO-PO Mapping:

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	-	-	-	-	1	1	-	-	2	-	2
CO2	-	-	-	-	1	1	-	-	2	-	2
CO3	-	-	-	-	1	1	-	-	2	-	2
CO4	-	-	-	-	1	1	-	-	2	-	2
CO5	-	-	-	-	1	1	-	-	2	-	2

Level 3 - High, Level 2 - Moderate, Level 1 - Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Computer Science and Engineering

SEMESTER-I								
	C PROGRAMMING LAB							
		Category: PSC						
Course Code	:	B25CPL107	CIE	:	50 Marks			
Teaching Hours L: T: P	:	0:0:2	SEE	:	50 Marks			
Total Hours	:	30(P)	Total	:	100 Marks			
Credits	:	1	SEE Duration	:	2Hrs			

	Course Objectives							
1.	Able to write programs in C using basic constructs.							
2.	Apply user-defined data structures like arrays, structures in implementing solutions to problems.							
3.	To develop applications by using Strings and Structures.							

CI	T
Sl. No	Part – A Note: Students must write the algorithm & flowchart for PART-A questions in the Record book
1.	To read radius value from the keyboard and calculate the area of circle and print the result in both floating and exponential notation.
2.	Programs using decision-making constructs
	a) Pay Calculation.
	b) To find if a number is negative, positive or zero.
	c) To check if entered alphabet is vowel or a consonant.
3.	Write a C Program to display the following by reading the number of rows as input
	1
	121
	12321
	123432 1
	n th row
4.	Two dimensional array with height and weight of persons and compute the Body Mass Index of the individuals.
5.	Display all prime numbers between two intervals using functions.
6.	Write a program to Sort the given set of N numbers using Bubble sort technique.
7.	Write functions to implement string operations such as compare, concatenate, and find string length. Use the
	parameter passing techniques.
	Part – B
1.	A math app needs to determine the type of roots for a quadratic equation based on user input. Develop a C
	Program to calculate and display the roots based on the given coefficients.
2.	Using 2D performs the Matrix multiplication and validates the rules of multiplication.
3.	Develop a C program that takes a unique identification input like PAN Number, AADHAR_Number,
	APAAR_Id, Driving License, Passport and checks it against a set of stored KYC records. Based on the
	input, display whether the individual is verified or not. Use an appropriate control structure to handle
	multiple possible ID matches. Assume all unique identification are of integer type.
4.	Develop a C program that accepts a course description string and a keyword from the user. Search whether
	the keyword exists within the course description using appropriate string functions. If found, display:
	"Keyword " found in the course description." Otherwise, display: "Keyword " not found in the course
	description."
5.	In an ATM system, two account balances need to be swapped temporarily for validation. Develop a C
	program that accepts two balances and uses a function with pointers to swap them. Display the balances before and after swapping.
6.	Implement structures to read, write and compute average- marks of the students, list the students scoring
o.	above and below the average marks for a class of N students.
7.	Write a C program to copy a text file to another, read both the input file name and target file name.
/.	write a C program to copy a text the to another, read both the hiput the name and target the name.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Course Outcomes: At the end of the course, the students will be able to							
CO1	Illustrate the concepts on simple applications making use of basic constructs, arrays and strings.						
CO2	Apply the methods to involving functions, recursion, pointers, and structures.						
CO3	Design applications using sequential and random access file processing.						

Text Bo	oks
1.	Hassan Afyouni, Behrouz A. Forouzan. "A Structured Programming Approach in C", 4 th Edition, Cengage.

Reference Text Books								
1.	Schildt, Herbert. "C the complete reference", 4 th Edition, Mc GrawHill.							
2.	Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, 2 nd edition, Prentice Hall of India.							

Web links and Video lectures (e-Resources)

- https://www.coursera.org/learn/c-for-everyone
- https://cse02-iiith.vlabs.ac.in/exp/pointers/
- https://www.pdfdrive.com/c-programming-the-ultimate-way-to-learn-the-fundamentals-of-the-c e187584209.htm
- https://viden.io/knowledge/programming-in-c language/attachment/28313/c-the-complete-reference-herbert-schildt-4th-edition-pdf/preview]

ASSESSMENT STRUCTURE FOR LABORATORY:

- The assessment for each course is equally divided between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each component carrying 50% weightage.
- For both CIE and SEE, the student is required to conduct one experiment each from both Part A and Part B.
- To qualify and become eligible to appear for SEE, in the CIE component, a student must secure a minimum of 40% of 50 marks, i.e., 20 marks.
- In SEE component, Part A must be evaluating as 40% and Part B will be evaluating as 60%.
- To pass the SEE component, a student must secure a minimum of 35% of 50 marks, i.e., 18 marks. A student is
 deemed to have successfully completed the course if the combined total of CIE and SEE is at least 40 out of
 100 marks.

Component	Type of Assessment	Max. Marks	weightage	Total Marks					
Laboratory	Lab Record & Observation	Evaluating each expt. for 10	15						
		marks							
	Laboratory Test 1: Part - A	50	15	50					
	Laboratory Test 2: part - B	50	20						
SEE	Semester End Examination	100	50	50					
	Grand Total								

Course	Course Title		Teaching and Learning Structure					
Code		Classroom		Lab	Term work (TW) and	Total no.	Total	
		Instruction (CI)		Instruction	self learning (SL) in	of	Credits	
		in hours per		(LI) in hours	hours / Sem	hours/sem		
		semester		per semester				
		L	T	P	SAAE			
B25CPL207	C Programming Lab	00 00		30	00	30	1	
	(L:T:P:S 0:0:2:0)							

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

SEMESTER-I									
INNOVATION AND DESIGN THINKING Category: AEC/SDC									
CourseCode : B25IDL108 CIE : 100 Marks									
TeachingHours: L:T: P	:	0:0:2	SEE	:					
TotalHours	:	15 (P)	Total	:	100 Marks				
Credits	:	1	SEEDuration	:					
Semester running period : 15-16 weeks									
Examination type (Only CIE - Internals) divided into 4 reviews with each of 25 marks: Practical/ PPT									
Presentation/Seminar/Demonstrati	on/Po	oster Presentation/E	xhibition/Weekly/Project		Report/Project				

	Course Objectives				
1.	Toexplaintheconceptofdesignthinkingforproductandservicedevelopment in a practical way.				
2	Toexplainthefundamentalconceptofinnovationanddesignthinking& to develop hands-on skill and knowledge				
۷.	about various engineering components and devices.				
2	Todiscussthemethodsofimplementingdesignthinkingintherealworld& learn modern tools and techniques to				
3.	develop the proposed designed models, may be on paper, soft or hard-oriented.				
	To improve interpersonal skills, enhance team work, written and oral communication skills. & examine the				
4.	various components of a project plan, viz., literature survey, modern tools, methodologies and execution of the				
	1				

Exhibition/Reviews/Observation/Case-Study/Simulation Study/Prototype Development/Model Making.

To continuously evaluate the developed works through guide/supervisor.

Course	e Outcomes : At the end of the IDT course, the students will be able to
COI	Demonstrate a sound technical knowledge of their selected project topic& develop various types of design
COI	procedures.
CO2	Use literature survey for problem identification, formulation and solution& generate and develop design ideas
CO2	through different techniques.
CO3	Analyze, design and develop engineering solutions to problems utilizing a systems approach& identify the
CO3	significance of reverse Engineering to Understand products.
CO4	Prepare the working model/ simulation for the project and demonstrate the same& draw technical drawing for
CO4	design ideas.
CO5	Effectively write a report on the project topic with obtained results& to inculcate project management, team
	building, communication, interpersonal and team management skills.

Teaching-LearningProcess(GeneralInstructions) – Practical Based (Mini-Project Category) – Project Based Learning Approach

- 1. These are sample strategies; which teachers can use to accelerate the attainment of the various course outcomes.
- 2. Encouragecollaborative(GroupLearning), group learningintheclass/practical/lab by designing group based miniprojects in any domain.
- 3. Showvideo/animationfilmstoexplainconcepts of practicality in solving the designed problems.
- 4. Practical based-hands on methodologies, may be hardware or software oriented in the class.
- 5. Case-study oriented, Survey based orientations.
- 6. Adopt ProblemBased Learning (PBL), which fosters students' Analytical skills, develops thinking skillssuchastheabilitytoevaluate, generalize, and analyze information rather than simply recall it.
- 7. Discusshoweveryconceptcanbeappliedtotherealworld –andwhenthat'spossible,ithelps improve the students' understanding by doing case study or solving using simulations or doing some real time implementation in hardware.
- 8. Conducting design thinking workshops, Design Thinking Workshop Empathize, Design, Ideate, Prototype and Test the products.
- 9. Model building, Prototype building thro' innovative design thinking concepts.
- 10. Learn different types of simulation tools for solving real world problems

Tonted a Page

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Week 1, 2 & 3: Orientation and Team Formation (related to only mini-project development – resulting in a prototype with either s/w or h/w or both)

Week -1&2: Introduction to Social Entrepreneurship, Innovation and Design Thinking Group discussion on What is Innovation v/s Invention. Why Design Thinking is important. Brief about 5 stages: Empathize – Define – Ideate – Prototype – Test.

Week -3: Innovation warm-up activities, forming interdisciplinary teams, Instructions about Next week activities

Week 4-5: Empathy and Field Exploration(related to only mini-project development)

Week-4&5: Field (any public places of student's interest e.g. - Village, Government Office, Industry. R&D institute, NGO etc) visits, stakeholder interviews and interaction. Recording all interaction through handwritten in activity book prescribed by the University.

Week 6, 7 and 8: Problem Definition(related to only mini-project development)

Week-6: Documentation, categorization and Group discussion on interactions and problems/challenges.

Week-7&8: Problem framing using "How Might We" approach, Identification of social problems and user insights through affinity Clustering and Problem Tree. Mention of clearly defined challenge statements.

Week 9, 10 &11: Ideation Sprint(related to only mini-project development)

Week-9&10: Presentation by teams on Defined Problems, Brainstorming interactions and Mind Mapping.

Week-11: Idea Filtering - Shortlist of creative, eco -friendly and feasible ideas. Selection of one Suitable IDEA for next process, Designing/Structuring of Prototype model.

Week 12, 13 &14: Rapid Prototyping using Atal Idea Lab/Makers Space(related to only mini-project development)

Week-12&13: Building low-fidelity and working models using tools like Arduino, 3D printers,: Digital fabrication, electronics kits and recycled materials.

Week-14: User testing, Feedback collection, Iteration - Observation Notes, Feedback Forms (Designing a business model for impact and scalability, if possible) Preparation of Draft of social venture plan

Week 15 &16: Final Demo and Social Pitch& Project Exhibition / Poster Presentation / Seminar(related to only mini-project development)

Innovation showcase, Poster display, Project pitching to jury, Presentation of the project (ppt) with impact with assessment, prototype, and sustainability plan, report making, video making.

Weeks 1 to 16 to be converted into a project with case study or software oriented or hardware oriented or both.

Final phase review (on/off line) with project demo, poster presentation & project presentation, hackathon participation, coding contest participation, working module explanation, power point presentation by the project group in the project exhibition.

List of Innovatively Designed Mini-Projects (samples & not restricted to these, but can be from other topics also, but should be related to the particular department & course undertaken)

Low-cost fire alarm system. IC 555 based traffic signal system.

Battery charger circuit using SCR. Piezo electricity generation circuit model.

Air pollution detection and control. Headphone amplifier using op-amp.

Transistor as a switch. Smart parking system design & development. Home automation Voting system using parallel adder circuit.

Referencematerials

- 1. https://www.electronicshub.org/electronics-mini-project-circuits/
- 2. https://nevonprojects.com/project-ideas/communication-project-ideas/
- 3. https://www.electronicsforu.com/
- 4. https://www.elprocus.com/

Francisco II Franço

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

ActivityBasedLearning(SuggestedActivitiesinClass)/PracticalBasedlearning

- 1. Activity Based Learning.
- 2. Group discussion, Presentations.
- 3. One faculty member shall be assigned to group of 60+ students or one division.
- 4. Each group shall contain a min of 1 & maximum of 5 students.
- 5. Nature of the group shall be multidisciplinary (Group shall be formed by selecting students from the same branch & same section only).

No.	CIE Component/Week	Marks	Description
1.	Orientation Activities & Communication Skills	10	Participation in Week 1–3 orientation, communication and team work skill-building exercises.
2.	Empathy & Field Exploration Documentation	20	Quality and completeness of field visit reflections, stakeholder interviews, and activity book.
3.	Problem Definition and Framing	20	Clarity of challenge statements, use of "How Might We", Affinity Mapping, Problem Trees.
4.	Ideation & Mind Mapping	10	Participation in brainstorming, mind mapping, idea filtering sessions.
5.	Prototype Development &Iteration	20	Quality and creativity of prototype/ model, user testing, feedback collection, iterations.
6.	Final Presentation &Pitch, Exhibition	10	Project pitching, poster presentation, storytelling and scalability model.
7.	Teamwork, Journal, Project Report and Engagement	10	Peer and mentor evaluation of participation, Team work, journal updates, ppt presentation Project Exhibition, Poster Presentation, Seminars, etc
8.	Total CIE marks	100	Final CIE marks to be considered

Minimum marks to qualifyfor CIE& to get eligible:

40 Out of 100 in CIE (4 Reviews) based on project report, presentation, Q & A, Demo, Model making, Awards-Prizes obtained @ various project exhibitions, poster design & weekly progress.

CIE – 1	First Phase Review – Batch formation, Topic Selection, Synopsis/Problem formulation	25 Marks
CIE – 2	Second Phase Review – 50% of the project to be completed, Ideation sprint s/w	25 Marks
CIE – 3	Third Phase Review–100% of the project to be completed with poster design, Rapid prototyping	25 Marks
	Fourth Phase Review – Project exhibition, Video of working, Project report, Demo, PPT (H/W)	25 Marks
	Total CIE-1 + CIE-2 + CIE-3 + Final	100 M

Scheme of evaluation

- CIE Marks allocation Parameters for Social Entrepreneurship, Innovation & Design Thinking using Atal Idea/Tinkering Lab or Maker Space
- The CIE marks shall be awarded by the project guide or the class handling faculty or who is guiding the IDT project.
- The CIE marks awarded for the mini-project work shall be based on the evaluation of project report, project presentation skill, and question and answer session in the respective ratios and as per the standard rubrics.
- The CIE marks awarded for the project report shall be the same for all the batch mates or may be varying depending on how they answer in the CIE tests.
- CIE marks is awarded for the project, poster, demo.

ASSESSMENT DETAILS (ONLY CIE)

The weightage of Continuous Internal Evaluation (CIE) is 100%. The minimum passing mark for the CIE is 40% of the maximum marks of 100 (40 marks out of 100). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject / course if the student secures morethanor equal to 40% (40 Marks out of 100) in the (CIE) and would be eligible for the next semester.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

CONTINUOUS INTERNAL EVALUATION (CIE):

Weekly Group Reviews can be conducted (project evaluation as per rubrics), where the students in groups have to give a demo of their work status in front of the project guide, the average of the 4 reviews shall be taken, i.e., initial review, mid review, the final review (similar to 3 internals) along with the final pitching demo. There are no assignments or quiz for this course as it is project-based learning, except 4 reviews with Poster Design, Power Point Presentation, Report making& Project Demo.

Total Marks scored (Sum of all the 4 reviews) out of 100maximum is min of 40 Marks to be obtained.

No.	CIE Component/Week	Marks	Description
1.	Prototype / Solution Demonstration	30	Working functionality, creativity, use of lab tools, and relevance to the problem.
2.	Final Presentation / Social Pitch	20	Clarity, storytelling, problem-solution fit, communication, visual aids.
3.	Business Model or Sustainability Plan	10	Feasibility, cost-effectiveness, scalability, and alignment with SDGs.
4.	Viva Voce	20	Individual understanding, contribution, tools used, learning outcomes.
5.	Documentation Report/Portfolio	20	Project report, reflection, team activity log, and stakeholder input summaries.
	Total CIE Marks	100	

Submission Requirements:

- Hand written activity book with CIE marks and Final project report (Typed or Handwritten).
- Observation booklet to be maintained with weekly progress& signed regularly by the guide.
- Book to be signed by teacher every week.
- Final presentation ppt / pdf (hard and soft copy).
- Prototype or working model [physical or conceptual (shall be drawn / sketched clearly on card sheet paper)].
- Peer / team feedback and reflection entries (if applicable).

Blooms level in developing the project / proposal / design:

Bloom's Category	Preparation of Project Report/ Profile
Marks (Out of 100)	100
Remember	10
Understand	10
Apply	10
Analyze	10
Evaluate	10
Create	50

Comprehensive Continuous Assessment in Developing IDT Hands-On Designing Projects

- Project-Based Assessment Capstone Projects Long-term, often team-based, real-world problems that require
 designing and implementing solutions Mini Projects Short-term individual or group projects based on course
 content Design Challenges Students design and prototype a solution to a specific engineering problem.
- 2. **Problem-Based Learning (PBL)** Students are given complex, open-ended engineering problems to solve using learned concepts, Encourages critical thinking, teamwork, and research.
- 3. **Presentations and Seminars Technical Presentations -** Individual or group presentations on engineering topics, case studies, or projects **Seminars -** Students present findings from independent or guided research.

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

- 4. **Simulations Studies -** Simulations using tools like MATLAB, Simulink, or ANSYS, LABVIEW, Multisim, Proteas, ProE, pSPICE, etc...
- 5. **Portfolios -** A collection of a student's work over time: reports, projects, designs, reflections, Useful for design, CAD, architecture, and software engineering courses.
- 6. **Case Studies and Technical Reports -** Students analyze real-world engineering problems, disasters, or innovations, Write a report with analysis, proposed solutions, and conclusions.
- 7. **Coding or Simulation Assignments -** For courses like software engineering, control systems, or mechanical design, Students are assessed on the design, logic, efficiency, and functionality of code or CAD models.
- 8. **Concept Mapping / Mind Mapping -** Students create visual representations of interrelated concepts, Helps assess conceptual understanding, Website design, App design.
- 9. **Annotated Bibliographies** / **Literature Reviews Study** Useful in research-based or under-graduate courses, Students analyze and summarize existing research in a structured format.
- 10. **Reflective Journals / Learning Logs -** Students regularly write reflections on what they've learned, challenges, and how they overcame them.
- 11. **Rubric-Based Design Reviews -** Used during the design stages of projects (mid-review, final review), Evaluated using predefined rubrics for innovation, feasibility, teamwork, etc.
- 12. **Service Learning or Community-Based Projects -** Applying engineering skills to benefit a local community, Example: Designing water filters, low-cost housing solutions, etc.

Different stages in 15 weeks for Developing IDT Hands-On Designing & Developing of Projects

- Problem Identification & Survey Define the problem statement, Collect background information through surveys, literature review, and case studies, Identify user requirements, constraints, and feasibility, Conduct field or market survey to understand practical needs.
- Requirement Analysis Document functional and non-functional requirements, Specify performance targets, cost limits, and timelines, Decide hardware and software platforms to be used, Perform risk assessment and resource planning.
- 3. Conceptual & Preliminary Design Develop block diagrams and flowcharts, Propose multiple solution approaches, Select the best feasible design through evaluation, Prepare preliminary specifications for hardware and software.
- 4. **Detailed Design -** Circuit/system design for hardware modules, Algorithm and architecture design for software, Interface design between hardware and software, Simulation and modeling (using MATLAB, CAD, NS2, C, Python, Multisim, etc.).
- Development & Implementation Hardware prototyping (PCB design, fabrication, testing), Software coding, database creation, and UI development, Integration of hardware and software modules, Implement communication interfaces, protocols, and controllers.
- 6. **Testing & Validation -** Unit testing of each hardware and software component, System-level testing for functionality, performance, and safety, Debugging and fault rectification, Validation against initial requirements and survey outcomes.
- 7. **Deployment & Demonstration** Assemble the complete project prototype/system, Demonstrate the working to stakeholders/end users, Collect feedback and refine the system, Ensure reliability under different operating conditions.
- 8. **Documentation** Prepare detailed technical report (survey results, design steps, methodology, results, conclusions), Create user manuals, flow diagrams, and circuit diagrams, Record test results, simulations, and comparisons, publish a paper, do a poster, create a video of full project working.
- 9. **Conclusion & Future Work** Summarize achievements of the project, Identify limitations of the current design, Suggest improvements, scalability, or new features for future work.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Mapping of Course Outcomes (CO) to Program Outcomes (PO)

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	-	-	-	-	-	-	-	-
CO2	3	1	1	-	1	1	1	-	1	-	-
CO3	3	2	3	2	2	1	2	2	1	1	-
CO4	2	3	3	1	2	1	1	-	1	-	-
CO5	2	1	1	-	-	-	-	-	1	2	1
CO6	-	-	-	-	-	2	2	2	3	3	3

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Humanities

SEMESTER-I					
ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ					
		Category: HSMC			
Course Code	:	B25SKK109	CIE	:	50 Marks
Teaching Hours L: T: P	:	1:0:0	SEE	:	50 Marks
Total Hours : 15 (T) Total : 100 Marks					
Credits	:	1	SEE Duration	:	1Hrs

	Course Objectives
1.	ವೃತ್ತಿಪರಪದವಿವಿದ್ಯಾರ್ಥಿಗಳಾಗಿರುವುದರಿಂದಕನ್ನಡಭಾಷೆ, ಸಾಹಿತ್ಯಮತ್ತುಕನ್ನಡದಸಂಸ್ಕೃತಿಯಪರಿಚಯಮಾಡಿಕೊಡುವುದು
2.	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಪ್ರಧಾನ ಭಾಗವಾದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಪರಿಚಯಿಸುವುದು.
3.	ಕನ್ನಡಸಾಹಿತ್ಯದಪ್ರಧಾನಭಾಗವಾದಆಧುನಿಕಪೂರ್ವಮತ್ತುಆಧುನಿಕಕಾವ್ಯಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿಪರಿಚಯಿಸುವುದು.
4.	ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯ
	ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ
5.	ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದಹಾಗೂಪ್ರವಾಸಕಥನಗಳಪರಿಚಯ ಪರಿಚಯಿಸುವುದು.

ಬೋನೆಮತ್ತುಕಲಿಕಾವ್ಯವಸ್ಥೆ/(Teaching-Learning Process-General Instructions) :

These are sample Strategies; which teacher can use to accelerate the attainment of the course outcomes.

- 1. ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡವನ್ನುಬೋಧಿಸಲು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಪ್ರಸ್ತುತ ಪುಸ್ತಕ ಆಧರಿಸಿ ಬೋರ್ಡ್ ವಿಧಾನವನ್ನು ಅನುಸರಿಸುವುದು. ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಪ್ರೇರೇಪಿಸುವುದು ಮತ್ತು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- 2. ಇತ್ತೀಚಿನ ತಂತ್ರಜ್ಞಾನದ ಅನುಕೂಲಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳುವುದು -ಅಂದರೆ ಕವಿ-ಕಾವ್ಯ ಪರಿಚಯದಲ್ಲಿ ಕವಿಗಳ ಚಿತ್ರಣ ಮತ್ತು ಲೇಖನಗಳು ಮತ್ತು ಕಥೆ,ಕಾವ್ಯಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ಧ್ವನಿ ಚಿತ್ರಗಳು, ಸಂಭಾಷಣೆಗಳು ಈಗಾಗಲೇ ಇತರ ವಿಮರ್ಶಕರು ಬರೆದಿರುವ ವಿಮರ್ಶಾತ್ಮಕ ವಿಷಯಗಳನ್ನು ಪಿ. ಪಿ. ಟಿ, ಡಿಜಿಟಲ ಮಾಧ್ಯಮಗಳ ಮುಖಾಂತರ ವಿಶ್ಲೇಷಿಸುವುದು.
- 3. ನವೀನ ಮಾದರಿಯ ಸಾಹಿತ್ಯ ಬೋಧನೆಗೆ ಸಂಬಂಧಪಟ್ಟ ವಿಧಾನಗಳನ್ನು ಶಿಕ್ಷಕರು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಅನುಕೂಲವಾಗುವ ರೀತಿಯಲ್ಲಿ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು

ಘಟಕ-1 ಕನ್ನಡಸಂಸ್ಕೃತಿ ಮತ್ತು ಭಾಷೆ ಕುರಿತಾದ ಲೇಖನಗಳು	No. of Hours			
1.ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ – ಹಂಪಾ ನಾಗರಾಜಯ್ಯ				
2.ಕರ್ನಾಟಕದ ಏಕೀಕರಣ ಒಂದು ಅಪೂರ್ವ ಚರಿತ್ರೆ-ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ				
3.ಆಡಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ- ಡಾ.L.ತಿಮ್ಮೇಶ ಮತ್ತು ಪ್ರೋವಿ. ಕೇಶವಮೂರ್ತಿ				
ಘಟಕ-2ಆಧುನಿಕ ಆಧುನಿಕ ಪೂರ್ವದ ಕಾವ್ಯಭಾಗ	No. of Hours			
1.ವಚನಗಳು-ಬಸವಣ್ಣ, ಅಕ್ಕ ಮಹಾದೇವಿ, ಅಲ್ಲಮಪ್ರಭು, ಆಯ್ದಕ್ಕಿ ಮಾರಯ್ಯ, ಜೇಡರ ದಾಸಿಮಯ್ಯ, ಆಯ್ದಕ್ಕಿ ಲಕ್ಕಮ್ಮ				
2.ಕೀರ್ತನೆಗಳು-ಅದರಿಂದೇನು ಫಲ ಇದರಿಂದೇನು ಫಲ -ಪುರಂದರದಾಸರು,				
ತಲ್ಲಣಿಸದಿರು ಕಂಡ್ಯ ತಾಳುಮನವೇ -ಕನಕದಾಸರು				
3.ತತ್ವ ಪದಗಳು –ಸಾವಿರ ಕೊಡಗಳ ಸುಟ್ಟು -ಶಿಶುನಾಳಷರೀಫ				
ಘಟಕ -3 ಆಧುನಿಕ ಕಾವ್ಯಭಾಗ	No. of Hours			
1.ಡಿವಿಜಿ ರವರ ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಆಯ್ದ ಕೆಲವು ಭಾಗಗಳು				
2.ಕುರುಡು ಕಾಂಚಾಣ -ದ. ರಾ. ಬೇಂದ್ರೆ	3			
3.ಹೊಸಬಾಳಿನ ಗೀತೆ-ಕುವೆಂಪು				

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Humanities

ಘಟಕ-4 ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ						No. of Hours
ಡಾ.	ಸರ್.	ಎಂವಿಶ್ವೇಶ್ವರಯ್ಯ	:ವ್ಯಕ್ತಿಮತ್ತುಐತಿಹ್ಯ	A.N	ಮೂರ್ತಿರಾವ್	
ಕರಕುಶಲ)ಕಲೆಗಳುಮತ್ತುಪ	ರಂಪರೆಯವಿಜ್ಞಾನಕರೀಗೌಡಬಿ)ೀಚನಹಳ್ಳಿ			3
ಘಟಕ-5 ಸಾಂಸ್ಕೃತಿಕಜನಪದಕಥೆಮತ್ತುಪ್ರವಾಸಕಥೆ						
1.ಯುಗಾದಿ -ವಸುಧೇಂದ್ರ						
2.ಮೆಗಾನೆ ಎಂಬ ಗಿರಿಜನ ಪರ್ವತ -ಹಿ.ಚಿಬೋರಲಿಂಗಯ್ಯ						3

ಸಾಂಸ್ಕೃತಿಕಕನ್ನಡ(1BKSK109)ಪಠ್ಯಕಲಿಕೆಯನಂತರವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ

	,
Course	e Outcomes: At the end of the course, the students will be able to
CO1	ಕನ್ನಡ ಭಾಷೆ ,ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಂಸ್ಕೃತಿಯ ಕುರಿತು ಅರಿವು ಮೂಡಿರುತ್ತದೆ.
CO2	ಕನ್ನ ಡಸಾಹಿತ್ಯ ದಪ್ರಧಾನಭಾಗವಾದಸಾಂಕೇತಿಕವಾಗಿಕಲಿತುಹೆಚ್ಚಿ ನಓದಿಗೆಮತ್ತುಜ್ಞಾನಕ್ಕೆ ಸ್ಫೂ ರ್ತಿಮೂಡಿರುತ್ತದೆ
CO3	ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯು ಹೆಚ್ಚಾಗುತ್ತದೆ
CO4	ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ ಹಾಗೂ ಅವರುಗಳು ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ತಿಳಿದುಕೊಂಡು ನಾಡಿನ ಇನ್ನಿತರ ವ್ಯಕ್ತಿಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳಲು
	ಕೌತುಕತೆ ಹೆಚ್ಚಾಗುತ್ತದೆ.
CO5	ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದಹಾಗೂಪ್ರವಾಸಕಥನಗಳಪರಿಚಯಮಾಡಿಕೊಡುವುದು

Text Books

University prescribed Text Books:

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಡಾ.ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ ಮತ್ತು ಡಾ.ಎಲ್ತಿಮ್ಮೇಶ ಪ್ರಕಟಣೆ:ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

ಸೂಚನೆ:

- 1. ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ಮತ್ತು ವಿವರಣೆಗಳಿಗೆ (9900832331) ಇವರನ್ನು ಸಂಪರ್ಕಿಸಿ.
- ಮಾದರಿಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಮಾಹಿತಿಮಧ್ಯಾಹ್ನ ಸಾಮಗ್ರಿ ಮತ್ತುಬಹುಬಹುಆಯ್ಕೆ ಮಾದರಿಯಪ್ರಶ್ನೆ ಗಳಕೈ ಪಿಡಿಗಾಗಿವಿಶ್ವವಿದ್ಯಾಲಯದವೆಬ್ಸೈ ಟ್ನೋ ಡುವುದು

ASSESSMENT STRUCTURE:

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall secure a minimum of 40% (40 marks out of 100) in the total of CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	weightage	Total Marks
Theory	Internal Assessment1 (MCQs)	50	Average of Best two	
	Internal Assessment2 (MCQs)	50	Assessments, scale down	
	Internal Assessment3 (MCQs)	50	to 40	50
CCA	Two Assignments	10	10	
	Seminar	10	10	
SEE	Semester End Exam	100	50	50
	100			

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Humanities

SEMESTER END EXAMINATION (SEE):

SEE paper shall be set for 50 questions, each question carries 01 mark. The pattern of the question paper is MCQ (Multiple Choice Questions). The time allotted for SEE is 01 hour.

Course Code	Course Title	Teaching and Learning Structure					
		Classroom		Lab	Term Work (TW)	Total no.	Total
		Instruction (CI) in		Instruction	and Self Learning	of	Credits
		hours / S	hours / Semester (L		(SL) in hours / Sem	hours/sem	
			,				
		L	T	P	SAAE		
B25BKK209	Samskruthika	15	00	00	15	30	1
(L:T:P:S	Kannada						
1:0:0:1)							

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Humanities

SEMESTER-I								
ಬಳಕೆ ಕನ್ನಡ/								
BALAKE KANNADA (KANNADA FOR USAGE)								
Category: HSMC								
Course Code : B25BKK109 CIE : 50 Marks								
Teaching Hours L : T : P : 1:0:0 SEE : 50 Marks								
Total Hours : 15 (T) Total : 100 Marks								
Credits	:	1	SEE Duration	:	1 Hr			

	Course Objectives/ಬಳಕೆ ಕನ್ನಡ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು					
1.	To Create the awareness regarding the necessity of learning local language for comfortable and healthy life.					
2.	To enable learners to Listen and understand the Kannada language properly.					
3.	To speak, read and write Kannada language as per requirement.					
4.	To train the learners for correct and polite conservation.					
5.	To know about Karnataka state and its language, literature and General information about this state.					

Teaching-Learning Process/ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. ಬಳಕೆ ಕನ್ನಡವನ್ನು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಬೋಧಿಸಲು ವಿಟಿಯು ಸೂಚಿಸಿರುವ ಪಠ್ಯ ಪುಸ್ತಕವನ್ನು ಉಪಯೋಗಿಸಬೇಕು.
- 2. ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ಗಳನ್ನು ತಯಾರಿಸಲು ಉತ್ತೇಜಿಸುವುದು ಮತ್ತು ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- 3. ಪ್ರತಿ ವಿದ್ಯಾರ್ಥಿ ಪುಸ್ತಕವನ್ನು ತರಗತಿಯಲ್ಲಿ ಬಳಸುವಂತೆ ನೋಡಿಕೊಳ್ಳುವುದು ಮತ್ತು ಪ್ರತಿ ಪಾಠ ಮತ್ತು ಪ್ರವಚನಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಪೂರಕ ಚಟುವಟಿಕೆಗಳಿಗೆ ತೊಡಗಿಸುತಕ್ಕದ್ದು.
- 4. ಡಿಜಿಟಲ ತಂತ್ರಜ್ಞಾನದ ಮುಖಾಂತರ ಇತ್ತೀಚೆಗೆ ಡಿಜಿಟಲೀಕರಣಗೊಂಡಿರುವ ಭಾಷೆ ಕಲಿಕೆಯ ವಿಧಾನಗಳನ್ನು ಪಿಪಿಟಿ ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ಮುಖಾಂತರ ಚರ್ಚಿಸಲು ಕ್ರಮ ಕೃಗೊಳ್ಳುವುದು. ಇದರಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ತರಗತಿಯಲ್ಲಿ ಹೆಚ್ಚು ಏಕಾಗ್ರತೆಯಿಂದ ಪಾಠ ಕೇಳಲು ಮತ್ತು ಅಧ್ಯಯನದಲ್ಲಿ ತೊಡಗಲು ಅನುಕೂಲವಾಗುತ್ತದೆ.
- 5. ಭಾಷಾ ಕಲಿಕೆಯ ಪ್ರಯೋಗಾಲಯದ ಮುಖಾಂತರ ಬಹುಬೇಗ ಕನ್ನಡ ಭಾಷೆಯನ್ನು ಕಲಿಯಲು ಅನುಕೂಲವಾಗುವಂತೆ ಕಾರ್ಯ ಚಟುವಟಿಕೆಗಳನ್ನು ಮತ್ತು ಕ್ರಿಯಾ ಯೋಜನೆಗಳನ್ನು ರೂಪಿಸುವುದು.

	Module- 1	No. of Hours
1. 2.	Introduction, Necessity of learning a local language. Methods to learn the Kannada language. Easy learning of a Kannada Language: A few tips. Hints for correct and polite conservation, Listening and Speaking Activities, Key to Transcription ವೈಯಕ್ತಿಕ, ಸ್ವಾಮ್ಯಸೂಚಕ /ಸಂಬಂಧಿತ ಸರ್ವನಾಮಗಳು ಮತ್ತು ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು- Personal Pronouns,	3
	Possessive Forms, Interrogative words	
	Module- 2	No. of Hours
1.	ನಾಮಪದಗಳ ಸಂಬಂಧಾರ್ಥಕ ರೂಪಗಳು, ಸಂದೇಹಾಸ್ಪದ ಪ್ರಶ್ನೆಗಳನ್ನು ಮತ್ತು ಸಂಬಂಧವಾಚಕ ನಾಮಪದಗಳು-Possessive forms of nouns, dubitive question and Relative nouns	
2.	ಗುಣ, ಪರಿಮಾಣ ಮತ್ತು ವರ್ಣ ಬಣ್ಣ ವಿಶೇಷಣಗಳು, ಸಂಖ್ಯಾವಾಚಕಗಳು-Qualitative, Quantitative and Color Adjectives, Numerals	3
3.	ಕಾರಕ ರುಪಗಳು ಮತ್ತು ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು-ಸಪ್ತಮಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಆ, ಅದು, ಅವು, ಅಲ್ಲಿ)Predictive Forms,	
	Locative Case	
	Module-3	No. of Hours
1.	ಚತುರ್ಥಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯದ ಬಳಕೆ ಮತ್ತು ಸಂಖ್ಯಾವಾಚಕಗಳು-Dative Cases, and Numerals	
2.	ಸಂಖ್ಯಾ ಗುಣವಾಚಕಗಳು ಮತ್ತು ಬಹುವಚನ ನಾಮ ರೂಪಗಳು-Ordinal numerals and Plural markers	3
3.	ನ್ಯೂನ ನಿಷೇಧಾರ್ಥಕ ಕ್ರಿಯಾಪದಗಳು ವರ್ಣ ಗುಣವಾಚಕಗಳು-Defective/Negative Verbs & Color Adjectives.	,

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Humanities

	Module– 4	No. of Hours
1.	ಅಪ್ಪಣೆ ಒಪ್ಪಿಗೆ, ನಿರ್ದೇಶನ, ಪ್ರೋತ್ಸಾಹ ಮತ್ತು ಒತ್ತಾಯ ಅರ್ಥರೂಪ ಪದಗಳು ಮತ್ತು ವಾಕ್ಯಗಳು-Permission,	
	Commands, encouraging and Urging words (Imperative words and sentences)	2
2.	ಸಾಮಾನ್ಯ ಸಂಭಾಷಣೆಗಳಲ್ಲಿ ದ್ವಿತೀಯ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ಸಂಭವನೀಯ ಪ್ರಕಾರಗಳು-Accusative	3
	Cases and Potential Forms used in General Communication	
	Module-5	No. of Hours
1.	ಕಾಲ ಮತ್ತು ಸಮಯದ ಹಾಗೂ ಕ್ರಿಯಾಪದಗಳ ವಿವಿಧ ಪ್ರಕಾರಗಳು-Different types of Tense, Time and	
	Verbs	3
2.	ದ್,-ತ್,- ತ,- ಇತ,- ಆಗಿ ಅಲ್ಲ,-,ಗ-, ಕ್- ತ್ತು, ಇದೆ, ಕ್ರಿಯಾ ಪ್ರತ್ಯಯಗಳೊಂದಿಗೆ ಭೂತ, ಭವಿಷ್ಯತ ವರ್ತಮಾನ	3
	ಕಾಲ ವಾಕ್ಯರಚನೆ-Formation of Past, Future and Present Tense Sentences with Verb Forms	

Course	Course Outcomes: At the end of the course, the students will be able to				
CO1	To understand the necessity of learning of local language for comfortable life.				
CO2	To speak, read and write Kannada language as per requirement.				
CO3	To communicate (converse) in Kannada language in their daily life with kannada speakers.				
CO4	To Listen and understand the Kannada language properly.				
CO5	To speak in polite conservation.				

ಬಳಕೆ ಕನ್ನಡ

ಡಾ.ಎಲ್ತಿಮ್ಮೇಶ

ಪ್ರಕಟಣೆ: ಪ್ರಸಾರಾಂಗ,ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

ಸೂಚನೆ:

- 1. ಹೆಚ್ಚಿನ ಮಾಹಿತಿ ಮತ್ತು ವಿವರಣೆಗಳಿಗೆ (9900832331) ಇವರನ್ನು ಸಂಪರ್ಕಿಸಿ.
- 2. ಮಾದರಿ ಪ್ರಶ್ನೆಪತ್ರಿಕೆ, ಕೋರ್ಸ್ಆಯ್ಕೆಮಾಹಿತಿ, ಅಧ್ಯಯನ ಸಾಮಗ್ರಿ ಮತ್ತು ಬಹು ಆಯ್ಕೆ ಮಾದರಿಯ ಪ್ರಶ್ನೆಗಳ ಕೈಪಿಡಿಗಾಗಿ ವಿಶ್ವ ವಿದ್ಯಾಲಯದ ವೆಬ್ಸೈಟ ನೋಡುವುದು.

ASSESSMENT STRUCTURE:

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall secure a minimum of 40% (40 marks out of 100) in the total of CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE):

Component	Type of Assessment	Max. Marks	weightage	Total Marks		
Theory	Internal Assessment1 (MCQs)	50	Average of Best two			
	Internal Assessment2 (MCQs)	50	Assessments, scale down to			
	Internal Assessment3 (MCQs)	50	40	50		
CCA	Two Assignments	10	10			
	Seminar	10	10			
SEE	Semester End Examination	100	50	50		
	Grand Total					

SEMESTER END EXAMINATION (SEE):

SEE paper shall be set for 50 questions, each question carries 01 mark. The pattern of the question paper is MCQ (Multiple Choice Questions). The time allotted for SEE is 01 hour.

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Humanities

Course Code	Course Title	Teaching and Learning Structure					
		Classroom		Lab	Term Work (TW)	Total no.	Total
		Instruction (CI) in		Instruction	and Self Learning	of	Credits
		hours / S	hours / Semester (1		(SL) in hours / Sem	hours/sem	
		L	T	P	SAAE		
B25BKK209	Balake Kannada	15	00	00	15	30	1
(L:T:P:S							
1:0:0:1)							