

RAJARAJESWARI COLLEGE OF ENGINEERING

An Autonomous Institution

Under VTU, Approved by AICTE, UGC & GoK No. 14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru

SCHEME & SYLLABUS

PG PROGRAM M.Tech (CSE)

3rd and 4th Semester

Academic Year **2025-26** (2024 Scheme)

For more information www.rrce.org

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru–560074

M.Tech in Computer Science and Engineering

Scheme and Syllabus of III & IV Semester (2024 Scheme)

VISION

To empower young minds through technology, research and innovation, to produce technically competent and socially responsible professionals in higher education.

MISSION

- To deliver excellence in education through innovative teaching, impactful research, and continuous skill development, preparing students to meet global challenges with technical expertise and ethical responsibility.
- To foster a transformative learning environment that integrates technology, research and practical experience, empowering students to become skilled professionals and socially conscious leaders.
- 3. To cultivate a culture of lifelong learning and professional excellence by encouraging creativity, research, and community engagement, equipping students with the skills to thrive in a dynamic world.
- 4. To provide a holistic educational experience that combines advanced technology, hands-on research, and community-focused learning, shaping students into competent, ethical professionals who contribute positively to society.

QUALITY POLICY

Rajarajeswari College of Engineering is committed to imparting quality technical education that nurtures competent, ethical professionals with global relevance. We ensure academic excellence through a dynamic, outcome-based curriculum, experienced faculty, and cutting-edge infrastructure. Continuous improvement is driven by innovation, research and strong industry collaboration. We foster holistic development and a progressive environment that supports lifelong learning, teamwork, and professional growth.

CORE VALUES

Academic Excellence, Integrity, Innovation, Global Competence, Continuous Improvement.

M.Tech in Computer Science and Engineering

DEPARTMENT VISION

To produce competent professionals who drive research, foster innovation, and develop technologies that address global challenges and inspire future generations.

DEPARTMENT MISSION

- 1. Provide extensive technical education to produce trained professionals and entrepreneurs.
- Establish a knowledge environment for progressive research by imparting industrial-based skill development courses on the growth of a modernized environment.
- 3. Create and develop innovative skills by collaborating with Industries to generate solutions for societal impact with moral standards.
- 4. To instill lifelong learning, adaptability, and resilience, equipping students to thrive in fast-evolving fields and continuously advance technology.

PROGRAM OUTCOMES (POs)

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)

PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems /components / processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)

PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modeling, analysis & interpretation of data to provide valid conclusions. (WK8).

PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modeling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)

PO6: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, WK7).

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)

PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective

reports and design documentation, make effective presentations considering cultural, language, and learning differences

PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.

PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Enable graduates to excel in higher education, conduct impactful research, and succeed in careers or entrepreneurship in Computer Science and Engineering.

PEO2: Ensure graduates develop the skills and mindset to continuously adapt to evolving technologies and acquire new knowledge.

PEO3: Cultivate professionalism and ethics in graduates, enabling them to contribute to societal progress and technological advancement.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Investigate complex problems across various domains, applying appropriate computational techniques to systematic design solutions and evaluate their effectiveness.

PSO2: Apply software engineering principles to design and develop high-quality, innovative software systems, utilizing contemporary and emerging information processing technologies.

INDEX

		III Semester	
Sl. No.	Course Code	Course Title	Page No.
1.	P24SCS301	Cloud Computing	1
2.	P24SCSA312	Cloud Security	3
3.	P24SCSB312	Cyber Forensics	5
4.	P24SCSC312	Soft and Evolutionary Computing	7
5.	P24SCSD312	Advances in Storage Area Network	9
6.	P24SCSE312	Business Intelligence and its Applications	11
7.	P24SCSA313	Managing Big Data	13
8.	P24SCSB313	Pattern Recognition	15
9.	P24SCSC313	Computer Vision	17
10.	P24SCSD313	Deep Learning	19
11.	P24SCSE313	Block Chain Technology	21
12.	P24SCSP304	Project Work Phase-I	23

	IV Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	P24SCSP401	Project work phase-II	24			
2.	P24SCSI402	Internship	26			

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M. Tech in Computer Science and Engineering

Scheme of Teaching and Examinations – 2024

(Effective from the Academic Year 2025-26)

Semester: III

	S. No Course Category and Course Code					Teaching 1	Hours / We	eek & C	redits	Examination			
S. No					Theory	Practical/ Seminar	SDA	Credits	SEE Juration Hrs	Œ Marks	SEE Marks	Total Marks	
					L	P	S		Q	C	SE	To	
1.	PCC	P24SCS301	Cloud Computing	CSE	3	0	2	3	3	50	50	100	
2.	PEC	P24SCSX312	Professional Elective -III	CSE	3	0	0	3	3	50	50	100	
3.	PEC	P24SCSX313	Professional Elective-IV	CSE	3	0	0	3	3	50	50	100	
4.	PROJ	P24SCSP304	Project Work phase -I	CSE	0	6	0	10	3	50	50	100	
						7	ГОТАL	19		200	200	400	

PCC: Professional Core Course, PEC: Professional Elective Course, Proj: Project, SP: Societal Project, INT: Internship, L: Lecture, P: Practical S:SDA- Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation,

Profession	nal Elective-III	Profes	sional Elective-IV
P24 SCSA312	Cloud Security	P24 SCSA313	Managing Big Data
P24 SCSB312	Cyber Forensics	P24 SCSB313	Pattern Recognition
P24 SCSC312	Soft and Evolutionary Computing	P24 SCSC313	Computer Vision
P24 SCSD312	Advances in Storage Area Network	P24 SCSD313	Deep Learning
P24 SCSE312	Business Intelligence and its Applications	P24 SCSE313	Block chain Technology

2024- Scheme Page 1

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M. Tech in Computer Science and Engineering

Scheme of Teaching and Examinations - 2024

(Effective from the Academic Year 2025-26)

Project Work Phase-I: The project work shall be carried out individually. However, in case a disciplinary or interdisciplinary project requires more participants, then a group consisting of not more than three shall be permitted. Students in consultation with the guide/co-guide in disciplinary project or guides/co-guides of all departments in case of multidisciplinary projects shall pursue a literature survey and complete the preliminary requirements of the selected Project work. Each student shall prepare a relevant introductory project document, and present a seminar. CIE marks shall be awarded by a committee comprising of HoD as Chairman, all Guides and a senior faculty of the concerned departments. The CIE marks awarded for project work phase -I shall be based on the evaluation of Project Report, Project Presentation skill, and performance in the Question and Answer session in the ratio of 50:25:25.

Societal Project: Students in consultation with the internal guide as well as with external guide shall involve in applying technology to workout/proposing viable solutions for societal problems. CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide, and a senior faculty of the department. The CIE marks awarded shall be based on the evaluation of Project Presentation skill, and performance in the Question and Answer session in the ratio of 50:25:25.

Those, who have not completed the Societal Project, shall be declared as fail in the course and have to complete the same during subsequent semester/s after satisfying the Societal Project requirements. There is no SEE for this course.

Internship: Those, who have not completed the internship, shall be declared as fail in the internship course and have to complete the same during subsequent University examinations after satisfying the internship requirements. Internship SEE (University examination) shall be as per the University norms. CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide and a senior faculty of the department. The CIE marks awarded for internship shall be based on the evaluation of Report, Presentation skill, and performance in the Question and Answer session in the ratio of 50:25:25.

HoD Dean-Academics Principal

2024- Scheme Page 2

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

M. Tech in Computer Science and Engineering

Scheme of Teaching and Examinations - 2024

(Effective from the Academic Year 2025-26)

Semester: IV

					Teaching 1	Hours / Wo	eek & C	redits		Examin	ation			
S. No	Course Category and Course Code		0 •				Theory	Practical/ Seminar	SDA	Credits	SEE uration in Hours	IE Marks	SEE Marks	Total Marks
					L	P	S		Du	C	SE	Tol		
1.	PROJ	P24SCSP401	Project work Phase-II	CSE	0	08	0	10	3	100	100	200		
2.	INT	P24SCSI402	Internship	CSE	Completed	d during		11	3	50	50	100		
						r	ГОТАL	21	3	150	150	300		

PCC: Professional Core Course, PEC: Professional Elective Course, Proj: Project, SP: Societal Project, INT: Internship, L: Lecture, P: Practical S:SDA- Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation,

Project Work Phase-II: Students in consultation with the guide/co-guide (if any) in disciplinary project or guides/co-guides (if any) of all departments in case of multidisciplinary projects, shall continue to work of Project Work phase -1to complete the Project work. Each student / batch of students shall prepare project document, and present a seminar. CIE marks shall be awarded by a committee comprising of HoD as Chairman, all Guide/s and co-guide/s (if any) and a senior faculty of the concerned departments. The CIE marks awarded for project work phase -II, shall be based on the evaluation of Project Report, Project Presentation skill, and performance in the Question and Answer session in the ratio of 50:25:25. SEE shall be at the end of IV semester. Project work evaluation and Viva-Voce examination (SEE), after satisfying the plagiarism check, shall be as per the institution norms.

HoD Dean-Academics Principal

2024- Scheme Page 3

SEMESTER-III						
CLOUD COMPUTING						
	Category: PCC					
Course Code	:	P24SCS301	CIE	:	50 Marks	
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks	
Total Hours	:	45(T)	Total	:	100 Marks	
Credits	:	3	SEE Duration	:	3 Hrs.	

	Course Objectives					
1.	1. Discuss the concepts, characteristics, delivery models and benefits of cloud computing					
2.	2. Explore the key technical, organizational and compliance challenges of cloud computing					
3.	3. Grasp the concepts of virtualization efficiently.					
4.	4. Explore the security issues that arise from cloud computing architectures intended for delivering Cloud based					
	enterprise IT services.					

Module - 1	No. of Hours
Introduction, Cloud Infrastructure: Cloud computing, Cloud computing delivery models and	
services, Ethical issues, Cloud vulnerabilities, Cloud computing at Amazon, Cloud computing the	9
Google perspective, Microsoft Windows Azure and online services, Open-source software platforms	
for private clouds, Cloud storage diversity and vendor lockin, Energy use and ecological impact,	
Service level agreements, User experience and software licensing. Exercises and problems.	
Module - 2	No. of Hours
Cloud Computing: Application Paradigms.: Challenges of cloud computing, Architectural styles of	
cloud computing,	9
Workflows: Coordination of multiple activities, Coordination based on a state machine model: The	
Zookeeper, The Map Reduce programming model, A case study: The Gre The Web application,	
Cloud for science and engineering, High-performance computing on a cloud, Cloud computing for	
Biology research, Social computing, digital content and.	
Module - 3	No. of Hours
Cloud Resource Virtualization: Virtualization, Layering and virtualization, Virtual machine	
monitors, Virtual Machines, Performance and Security Isolation, Full virtualization and	9
paravirtualization, Hardware support for virtualization, Case Study: Xen a VMM based	
paravirtualization, Optimization of network virtualization, vBlades, Performance comparison of	
virtual machines, The dark side of virtualization, Exercises and problems	
Module - 4	No. of Hours
Cloud Resource Management and Scheduling: Policies and mechanisms for resource management,	
Application of control theory to task scheduling on a cloud, Stability of a two-level resource	9
allocation architecture, Feedback control based on dynamic thresholds, Coordination of specialized	
autonomic performance managers, A utility-based model for cloud-based Web services, Resourcing	
autonomic performance managers, A utility-based model for cloud-based Web services, Resourcing bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds,	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds,	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines,	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic	No. of Hours
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems	No. of Hours
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5	No. of Hours
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2 instances, Connecting clients to cloud instances through firewalls, Security rules for application and	
bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling, Exercises and problems Module - 5 Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, Amazon web services: EC2 instances, Connecting clients to cloud instances through firewalls, Security rules for application and transport layer protocols in EC2, How to launch an EC2 Linux instance and connect to it, How to use	

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1	Compare the strengths and limitations of cloud computing					
CO2	Identify the architecture, infrastructure and delivery models of cloud computing					
CO3	Demonstrate the working of VM and VMM on any cloud platforms (public/private), and run a software service on that.					
CO4	Identify the known threats, risks, vulnerabilities and privacy issues associated with Cloud Based IT services.					

Text Bo	oks
1.	Cloud Computing: Theory and Practice, Dan C Marinescu Elsevier (MK), 2013.

I	Referen	ce Text Books
ſ	1.	Computing Principles and Paradigms, Rajkumar Buyya, James Broberg, AndrzejGoscinsk,I Willey, 2014.
ĺ	2.	Cloud Computing Implementation, Management and Security John W Rittinghouse, James F Ransome, CRC
١		Press. 2013.

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Evaluation Criteria	Marks
		Allocation
	CIE - Theory Component (50 Marks)	
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30
b) Seminar Presentation	Seminar presentation 1&2-Average of two Presentations(Each 10 marks)	10
c) Assignment	Assignments 1&2 – Average of two assignments (Each 10 marks)	10
Total a + b + c	Sum of Tests + Assignment+ Seminar	50
Minimum passing marks	50% (25/50) of the maximum marks of CIE	
	SEE - Theory Component (50 Marks)	
Minimum passing marks	40% of the maximum marks of SEE. (Scaled Down to 50 : Minimum marks : 20/50)	100
Passing Criteria for CIE +SEE (Theory)	The student secures not less than 50% (50 marks out of 100) in the sum CIE (Continuous Internal Evaluation) and SEE (Semester End Examin together.	

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	-	-	-	-	1	1
CO4	3	3	3	3	2	-	-	-	-	-	1	1

3-High, 2-Moderate, 1-Low

SEMESTER-III								
CLOUD SECURITY								
	Category: PEC							
Course Code	:	P24SCSA312	CIE	:	50 Marks			
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45(T)	Total	••	100 Marks			
Credits	:	3	SEE Duration	:	3 Hrs.			

	Course Objectives
1.	Define core cloud computing concepts and fundamental principles, the Impact of Cloud Computing on Users.
2.	Explore Infrastructure Security and Application-Level Data Security.
3.	Explain Identity and Access management.
4.	Explore Security Management in the Cloud.
5.	Illustrate Security Management in the Cloud.

Module - 1	No. of Hours
WHAT IS CLOUD COMPUTING? Cloud Computing Defined, The SPI Framework for Cloud	
Computing, The Traditional Software Model, The Cloud Services Delivery Model, Cloud	9
Deployment Models, Key Drivers to Adopting the Cloud, The Impact of Cloud Computing on	
Users, Governance in the Cloud, Barriers to Cloud Computing Adoption in the Enterprise.	
Module - 2	No. of Hours
Infrastructure Security: Infrastructure Security: The Network Level, Infrastructure Security: The	
Host Level, Infrastructure Security: The Application Level Data Security and Storage: Aspects of	9
Data Security, Data Security Mitigation, Provider Data and Its Security.	
Module - 3	No. of Hours
Identity and Access Management: Trust Boundaries and IAM, Why IAM?, IAM Challenges, IAM	
Definitions, IAM Architecture and Practice, Getting Ready for the Cloud, Relevant IAM Standards	9
and Protocols for Cloud Services, IAM Standards, Protocols, and Specifications for Consumers,	
Comparison of Enterprise and Consumer Authentication Standards and Protocols, IAM Practices in	
the Cloud, Cloud Authorization Management, Cloud Service Provider IAM Practice	
Module - 4	No. of Hours
Security Management in the Cloud: Security Management Standards, Security Management in the	
Cloud, Availability Management, SaaS Availability Management, PaaS Availability Management,	9
IaaS Availability Management, Access Control	
Module - 5	No. of Hours
Audit and Compliance: Internal Policy Compliance, Governance, Risk, and Compliance (GRC),	
Illustrative Control Objectives for Cloud Computing, Incremental CSP-Specific Control	9
Objectives, Additional Key Management Control Objectives, Control Considerations for CSP	
Users, Regulatory/External Compliance, Other Requirements, Cloud Security Alliance, Auditing	
the Cloud for Compliance	

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1	Explore the impact of Cloud Computing on Users					
CO2	Explain the Infrastructure Security and Application Level Data Security					
CO3	Define Identity Management					
CO4	Explore the Security Management in the cloud					
CO5	Illustrate Security Management in the Cloud					

Text Bo	oks
1.	Vic (J.R.) Winkler, Securing the Cloud, Cloud Computer Security Techniques and Tactics, Syngress, 2011

Referen	ce Text Books
1.	Tim Mather, SubraKumaraswamy, ShahedLatif, Cloud Security and Privacy, An Enterprise Perspective on
	Risks and Compliance, Oreilly Media, 2009

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of M.Tech in Computer Science and Engineering

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Evaluation Criteria	Marks		
		Allocation		
	CIE - Theory Component (50 Marks)			
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50		
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50		
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50		
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30		
b) Seminar Presentation	Seminar presentation 1&2-Average of two Presentations(Each 10 marks)	10		
c) Assignment	Assignments 1&2 – Average of two assignments (Each 10 marks)	10		
Total a + b + c	Sum of Tests + Assignment+ Seminar	50		
Minimum passing marks	50% (25/50) of the maximum marks of CIE			
	SEE - Theory Component (50 Marks)			
Minimum passing marks	40% of the maximum marks of SEE.	100		
Willimium passing marks	(Scaled Down to 50 : Minimum marks : 20/50)	100		
Passing Criteria for CIE +SEE (Theory) The student secures not less than 50% (50 marks out of 100) in the sum of CIE (Continuous Internal Evaluation) and SEE (Semester End Examina together.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	-	-	-	-	1	1
CO4	3	3	3	3	2	-	-	-	-	-	1	1
CO5	3	3	3	3	2	-	-	-	-	-	1	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

SEMESTER-III									
	CYBER FORENSICS								
		Category: PEC							
Course Code	:	P24SCSB312	CIE	:	50 Marks				
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks				
Total Hours	:	45(T)	Total	:	100 Marks				
Credits	:	3	SEE Duration	:	3 Hrs.				

	Course Objectives						
1.	Define computer forensics and computer investigation						
2.	Illustrate the Data Acquisition						
3.	Explain how Live Acquisition, Email Investigation is carried out.						
4.	Explore Foot printing and Social Engineering						

Module - 1	No. of Hours.
Computer Forensics and Investigation as a Profession, Understanding Computer Investigation.	9
Module - 2	No. of Hours.
Data Acquisition, Processing Crime and incident Scenes	9
Module - 3	No. of Hours.
Virtual machines, Network Forensics and Live Acquisition, Email Investigation.	9
Module - 4	No. of Hours.
Introduction to Ethical Hacking – Foot printing and Social Engineering- Scanning and Enumeration	9
Module - 5	No. of Hours.
System Hacking- Sniffers, Denial of Service - Session Hijacking.	9

Course O	Course Outcomes: At the end of the course, the students will be able to				
CO1	Explain the basics of computer forensics				
CO2	Demonstrate the data Acquisition				
CO3	Explore the Email investigation				
CO4	Identify the vulnerabilities in a given network infrastructure.				
CO5	Implement real-world hacking techniques to test system security				

Text Books							
1.	Bill Nelson, Amelia Phillips, Frank Enfinger, Christopher Steuart, —Computer Forensics and Investigations!,						
	Cengage Learning, India Edition, 2016.						
2.	CEH official Certfied Ethical Hacking Review Guide, Wiley India Edition, 2015.						

Referen	Reference Text Books						
1.	John R. Vacca, —Computer Forensicsl, Cengage Learning, 2005						
2.	MarjieT.Britz, —Computer Forensics and Cyber Crimel: An Introductionl, 3rd Edition, Prentice Hall, 2013						

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Evaluation Criteria	Marks
		Allocation
	CIE - Theory Component (50 Marks)	
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30
b) Seminar Presentation	Seminar presentation 1&2-Average of two Presentations(Each 10 marks)	10
c) Assignment	Assignments 1&2 - Average of two assignments (Each 10 marks)	10
Total a + b + c	Sum of Tests + Assignment+ Seminar	50
Minimum passing marks	50% (25/50) of the maximum marks of CIE	

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

	SEE - Theory Component (50 Marks)		
Minimum passing marks 40% of the maximum marks of SEE. (Scaled Down to 50 : Minimum marks : 20/50)			
Passing Criteria for CIE +SEE (Theory)	The student secures not less than 50% (50 marks out of 100) in the sum CIE (Continuous Internal Evaluation) and SEE (Semester End Examin together.		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	-	-	-	-	1	1
CO4	3	3	3	3	2	-	-	-	-	-	1	1
CO5	3	3	3	3	2	-	-	-	-	-	1	1

³⁻Highly mapped 2-Moderately mapped 1-Slightly mapped

SEMESTER-III						
SOFT AND EVOLUTIONARY COMPUTING						
		Category: PEC				
Course Code	:	P24SCSC312	CIE	:	50 Marks	
Teaching Hours L:P: SDA : 3:0:0 SEE : 50 Marks				50 Marks		
Total Hours : 45(T) Total : 100 Marks						
Credits	:	3	SEE Duration	:	3 Hrs.	

	Course Objectives					
1.	To Understand soft computing techniques					
2.	2. Able to apply the learned techniques to solve realistic problems					
3.	Able to Differentiate soft computing with hard computing techniques					

Module - 1	No. of Hours	
Introduction to soft computing : ANN, FS, GA, SI, ES, Comparing among intelligent systems.		
ANN: introduction, biological inspiration, BNN&ANN, classification, first Generation NN,	9	
perceptron, illustrative problems.		
Module - 2	No. of Hours	
Adaline, Medaline, ANN: (2nd generation), introduction, BPN, KNN,HNN, BAM, RBF,SVM and		
illustrative problem.	9	
Module - 3	No. of Hours	
Fuzzy logic: introduction, human learning ability, undecidability, probability theory, classical set and		
fuzzy set, fuzzy setoperations, fuzzy relations, fuzzy compositions, natural language and fuzzy		
interpretations, structure of fuzzy inference system, illustrative problems.		
Module - 4		
Introduction to GA, GA, procedures, working of GA, GA applications, applicability, evolutionary		
programming, working of EP, GA based Machine learning classifier system, illustrative problems.		
Module - 5		
Swarm Intelligent system: Introduction, Background of SI, Ant colony system Working of ACO,		
Particle swarm Intelligence (PSO).	9	

Course O	Course Outcomes: At the end of the course, the students will be able to				
CO1	CO1 Demonstrate the working of soft computing techniques				
CO2	Apply the learned techniques to solve realistic problems				
CO3	Differentiate soft computing with hard computing techniques				

Text Bo	oks
1.	Soft computing: N. P Padhy and S P Simon, Oxford University Press 2015

R	eferen	ce Text Books
	1.	Principles of Soft Computing, Shivanandam, Deepa S. N Wiley India, 2011

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Evaluation Criteria	Marks
		Allocation
	CIE - Theory Component (50 Marks)	
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30
b) Seminar Presentation	Seminar presentation 1&2-Average of two Presentations(Each 10 marks)	10
c) Assignment	Assignments 1&2 – Average of two assignments (Each 10 marks)	10
Total a + b + c	Sum of Tests + Assignment+ Seminar	50

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of M.Tech in Computer Science and Engineering

Minimum passing marks 50% (25/50) of the maximum marks of CIE					
	SEE - Theory Component (50 Marks)				
Minimum passing marks	40% of the maximum marks of SEE. (Scaled Down to 50: Minimum marks: 20/50)	100			
Passing Criteria for CIE +SEE (Theory)	The student secures not less than 50% (50 marks out of 100) in the sum CIE (Continuous Internal Evaluation) and SEE (Semester End Examin together.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	-	-	-	-	1	1

³⁻Highly mapped, 2-Moderately mapped, 1-Slightly mapped

SEMESTER-III						
ADVANCED IN STORAGE AREA NETWORK						
Course Code	Π.	Category: PEC P24SCSD312	CIE		50 Marks	
Teaching Hours L:P: SDA		3:0:0	SEE	<u> </u>	50 Marks	
Total Hours		45(T)	Total		100 Marks	
Credits	:	3	SEE Duration	:	3 Hrs.	

	Course Objectives
1.	Explore contrast storage centric and server centric systems.
2.	Define metrics used for Designing storage area networks.
3.	Discuss the data centers for maintaining the data with the concepts of backup mainly remote mirroring
	concepts.

Module - 1	No. of Hours
Introduction: Server Centric IT Architecture and its Limitations; Storage – Centric IT Architecture	
and its advantages. Case study: Replacing a server with Storage Networks The Data Storage and	9
Data Access problem; The Battle for size and access. Intelligent Disk Subsystems: Architecture of	
Intelligent Disk Subsystems; Hard disks and Internal I/O Channels; JBOD, Storage virtualization	
using RAID and different RAID levels; Caching: Acceleration of Hard Disk Access; Intelligent	
disk subsystems, Availability of disk subsystems.	
Module - 2	No. of Hours
I/O Techniques: The Physical I/O path from the CPU to the Storage System; SCSI; Fibre Channel	
Protocol Stack; FibreChannel SAN; IP Storage. Network Attached Storage: The NAS Architecture,	9
The NAS hardware Architecture, The	
NAS Software Architecture, Network connectivity, NAS as a storage system. File System and	
NAS: Local File Systems; Network file Systems and file servers; Shared Disk file systems;	
Comparison of fibre Channel and NAS.	
Module - 3	No. of Hours
Storage Virtualization: Definition of Storage virtualization; Implementation Considerations;	
Storage virtualization on Block or file level; Storage virtualization on various levels of the storage	9
Network; Symmetric and Asymmetric storage virtualization in the Network	
Module - 4	No. of Hours
SAN Architecture and Hardware devices: Overview, Creating a Network for storage; SAN	
Hardware devices; The fibrechannel switch; Host Bus Adaptors; Putting the storage in SAN;	9
Fabric operation from a Hardware perspective. Software Components of SAN: The switch's	
Operating system; Device Drivers; Supporting the switch's components; Configuration options for	
SANs	
Module - 5	No. of Hours
Management of Storage Network: System Management, Requirement of management System,	
Support by Management System, Management Interface, Standardized Mechanisms, Property	9
Mechanisms, Inband Management, Use of SNMP, CIM and WBEM, Storage Management	
Initiative Specification (SMIS), CMIP and DMI, Optional Aspects of the Management of Storage	
Networks, Summary.	

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1 Identify the need for performance evaluation and the metrics used for it						
CO2	Apply the techniques used for data maintenance					
CO3	CO3 Realize strong virtualization concepts					
CO4						

Text Bo	oks
1.	Storage Networks Explained, Ulf Troppens, Rainer Erkens and Wolfgang Muller, Wiley India, 2013.
2.	Storage Networks The Complete Reference, Robert Spalding, Tata McGrawHill, 2011.
3.	Storage Networking Fundamentals: An Introduction to Storage Devices Subsystems, Applications,
	Management, and File Systems, Marc Farley, Cisco Press, 2005.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of M.Tech in Computer Science and Engineering

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Evaluation Criteria	Marks			
		Allocation			
	CIE - Theory Component (50 Marks)				
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50			
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50			
Internal Assessment Test 3 Covers 100% of the syllabus (50 marks, 1:30 -hour duration)					
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30			
b) Seminar Presentation	i e				
c) Assignment	Assignments 1&2 – Average of two assignments (Each 10 marks)	10			
Total a + b + c	Sum of Tests + Assignment+ Seminar	50			
Minimum passing marks	50% (25/50) of the maximum marks of CIE				
	SEE - Theory Component (50 Marks)				
Minimum passing marks	40% of the maximum marks of SEE.	100			
Willimium passing marks	(Scaled Down to 50 : Minimum marks : 20/50)	100			
Passing Criteria for CIE +SEE (Theory) The student secures not less than 50% (50 marks out of 100) in the sum CIE (Continuous Internal Evaluation) and SEE (Semester End Examin together.					

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	-	-	-	-	1	1
CO4	3	3	3	3	2	-	-	-	-	-	1	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

SEMESTER-III						
BUSINESS INTELLIGENCE AND ITS APPLICATIONS						
Category: PEC						
Course Code	:	P24SCSE312	CIE	:	50 Marks	
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks	
Total Hours	:	45(T)	Total	:	100 Marks	
Credits	:	3	SEE Duration	:	3 Hrs.	

	Course Objectives
1.	Define the fundamental concepts of Business Intelligence and its implementation
2.	Appreciate the importance of Business reporting and performance measurement
3.	Gain the knowledge and skills for using data warehouses and data mining techniques for business intelligence
	purposes.

Module - 1	No. of Hours
Development Steps, BI Definitions, BI Decision Support Initiatives, Development Approaches,	
Parallel Development Tracks, BI Project Team Structure, Business Justification, Business Divers,	9
Business Analysis Issues, Cost – Benefit Analysis, Risk Assessment, Business Case Assessment	
Activities, Roles Involved In These Activities, Risks Of Not Performing Step, Hardware,	
Middleware, DBMS Platform, Non Technical Infrastructure Evaluation	
Module - 2	No. of Hours
Managing The BI Project, Defining And Planning The BI Project, Project Planning Activities,	
Roles And Risks Involved In These Activities, General Business Requirement, Project Specific	9
Requirements, Interviewing Process	
Module - 3	No. of Hours
Differences in Database Design Philosophies, Logical Database Design, Physical Database Design,	
Activities, Roles And Risks Involved In These Activities, Incremental Rollout, Security	9
Management, Database Backup And Recovery	
Module - 4	No. of Hours
Growth Management, Application Release Concept, Post Implementation Reviews, Release	
Evaluation Activities, The Information Asset and Data Valuation, Actionable Knowledge – ROI,	9
BI Applications, The Intelligence Dashboard	
Module - 5	No. of Hours
Business View of Information technology Applications: Business Enterprise excellence, Key	
purpose of using IT, Type of digital data, basics f enterprise reporting, BI road ahead.	9

Course O	Course Outcomes: At the end of the course, the students will be able to				
CO1	Explain the complete life cycle of BI/Analytical development				
CO2	Illustrate technology and processes associated with Business Intelligence framework				
CO3	Demonstrate a business scenario, identify the metrics, indicators and make L2 recommendations to achieve the business goal				

Text Books						
1.	Larissa T Moss and ShakuAtre, Business Intelligence Roadmap: The Complete Project Lifecycle for Decision					
	Support Applications, Addison Wesley Information Technology Series, 2003					
2.	R N Prasad, SeemaAcharya, Fundamentals of Business Analytics, Wiley India, 2011					

Reference Text Books					
1.	David Loshin, Business Intelligence: The Savvy Manager's Guide, Morgan Kaufmann				
2.	Brian Larson, Delivering Business Intelligence with Microsoft SQL Server 2005, McGraw Hill, 2006				
3.	Lynn Langit, Foundations of SQL Server 2008 Business Intelligence, Apress, 2011				

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of M.Tech in Computer Science and Engineering

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Component Evaluation Criteria								
CIE - Theory Component (50 Marks)									
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50							
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50							
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50							
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30							
b) Seminar Presentation Seminar presentation 1&2-Average of two Presentations(Each 10 marks)									
c) Assignment	Assignments 1&2 – Average of two assignments (Each 10 marks)								
Total a + b + c	Sum of Tests + Assignment+ Seminar	50							
Minimum passing marks 50% (25/50) of the maximum marks of CIE									
	SEE - Theory Component (50 Marks)								
Minimum passing marks	40% of the maximum marks of SEE.	100							
Willimium passing marks	(Scaled Down to 50 : Minimum marks : 20/50)	100							
Passing Criteria for CIE +SEE (Theory) The student secures not less than 50% (50 marks out of 100) in the sum total of CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) together.									

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	-	-	-	-	1	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

SEMESTER-III							
MANAGING BIG DATA							
		Category: PEC					
Course Code	:	P24SCSA313	CIE	:	50 Marks		
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks		
Total Hours	:	45(T)	Total	:	100 Marks		
Credits	:	3	SEE Duration	:	3 Hrs.		

	Course Objectives					
1.	Explore and apply the Big Data analytic techniques for business applications.					
2.	Discuss the overview of Apache Hadoop					
3.	Able to implement basic technologies that forms the foundations of Big Data					

Module - 1	No. of Hours
Meet Hadoop: Data!, Data Storage and Analysis, Querying All Your Data, Beyond Batch, Comparison with Other Systems: Relational Database Management Systems, Grid Computing, Volunteer Computing Hadoop Fundamentals MapReduce A Weather Dataset: Data Format, Analyzing the Data with Unix Tools, Analyzing the Data with Hadoop: Map and Reduce, Java MapReduce, Scaling Out: Data Flow, Combiner Functions, Running a Distributed MapReduce Job, Hadoop Streaming The Hadoop Distributed Filesystem The Design of HDFS, HDFS Concepts: Blocks, Namenodes and Datanodes, HDFS Federation, HDFS High-Availability, The Command-Line Interface, Basic Filesystem Operations, HadoopFilesystems Interfaces, The Java Interface, Reading Data from a Hadoop URL, Reading Data Using the FileSystem API, Writing Data, Directories, Querying the Filesystem, Deleting Data, Data Flow: Anatomy of a File Read, Anatomy of a File Write.,	9
Module - 2	No. of Hours
YARN Anatomy of a YARN Application Run: Resource Requests, Application Lifespan, Building YARN Applications, YARN Compared to MapReduce, Scheduling in YARN: The FIFO Scheduler, The Capacity Scheduler, The Fair Scheduler, Delay Scheduling, Dominant Resource Fairness Hadoop I/O Data Integrity, Data Integrity in HDFS, Local File System, ChecksumFileSystem, Compression, Codecs, Compression and Input Splits, Using Compression in MapReduce, Serialization, The Writable Interface, Writable Classes, Implementing a Custom Writable, Serialization Frameworks, File-Based Data Structures: SequenceFile	9
Module - 3	No. of Hours
Developing a MapReduce Application The Configuration API, Combining Resources, Variable Expansion, Setting Up the Development Environment, Managing Configuration, GenericOptionsParser, Tool, and ToolRunner, Writing a Unit Test with MRUnit: Mapper, Reducer, Running Locally on Test Data, Running a Job in a Local Job Runner, Testing the Driver, Running on a Cluster, Packaging a Job, Launching a Job, The MapReduce Web UI, Retrieving the Results, Debugging a Job, Hadoop Logs, Tuning a Job, Profiling Tasks, MapReduce Workflows: Decomposing a Problem into MapReduce Jobs, JobControl, Apache Oozie How MapReduce Works Anatomy of a MapReduce Job Run, Job Submission, Job Initialization, Task Assignment, Task Execution, Progress and Status Updates, Job Completion, Failures: Task Failure, Application Master Failure, Node Manager Failure, Resource Manager Failure, Shuffle and Sort: The Map Side The Reduce Side, Configuration Tuning, Task Execution: The Task Execution Environment, Speculative Execution, Output Committers	9
Module - 4	No. of Hours
MapReduce Types and Formats: MapReduce Types, Input Formats: Input Splits and Record's Text Input, Binary Input, Multiple Inputs, Database Input (and Output) Output Formats: Text Output, Binary Output, Multiple Outputs, Lazy Output, Database Output, Flume Installing Flume, An Example: Transactions and Reliability, Batching, The HDFS Sink, Partitioning and Interceptors, File Formats, Fan Out, Delivery Guarantees, Replicating and Multiplexing Selectors, Distribution: Agent Tiers, Delivery Guarantees, Sink Groups, Integrating Flume with Applications, Component Catalog	9
Module - 5	No. of Hours
Pig Installing and Running Pig, Execution Types, Running Pig Programs, Grunt, Pig Latin Editors, An Example: Generating Examples, Comparison with Databases, Pig Latin: Structure, Statements, Expressions, Types, Schemas, Functions, Data Processing Operators: Loading and Storing Data, Filtering Data, Grouping and Joining Data, Sorting Data, Combining and Splitting Data. Spark An Example: Spark Applications, Jobs, Stages and Tasks, A Java Example, A Python Example, Resilient	9

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of M.Tech in Computer Science and Engineering

Distributed Datasets: Creation, Transformations and Actions, Persistence, Serialization, Shared Variables, Broadcast Variables, Accumulators, Anatomy of a Spark Job Run, Job Submission, DAG Construction, Task Scheduling, Task Execution, Executors and Cluster Managers: Spark on YARN

Course Outcomes: At the end of the course, the students will be able to				
CO1	Managing big data using Hadoop and SPARK technologies			
CO2	Explain HDFS and MapReduce concepts			
CO3	Install, configure, and run Hadoop and HDFS			
CO4	Apply Big Data Solutions using Hadoop Eco System			

Reference Text Books					
1.	Hadoop: The Definitive Guide, Tom White, O'Reilley, 3 rd Edition, 2012				
2.	SPARK: The Definitive Guide, MateiZaharia and Bill Chambers, Oreilly, 2018				
3.	Apache Flume: Distributed Log Collection for Hadoop, D'Souza and Steve Hoffman Oreilly, 2014				

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Evaluation Criteria	Marks						
CIE - Theory Component (50 Marks)								
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50						
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50						
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50						
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30						
b) Seminar Presentation	b) Seminar Presentation Seminar presentation 1&2-Average of two Presentations(Each 10 marks)							
c) Assignment Assignments 1&2 – Average of two assignments (Each 10 marks)								
Total a + b + c Sum of Tests + Assignment+ Seminar		50						
Minimum passing marks	Minimum passing marks 50% (25/50) of the maximum marks of CIE							
	SEE - Theory Component (50 Marks)							
Minimum passing marks	40% of the maximum marks of SEE.							
within passing marks	(Scaled Down to 50 : Minimum marks : 20/50)	100						
Passing Criteria for CIE +SEE (Theory) The student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.								

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	-	-	-	-	1	1
CO4	3	3	3	3	2	-	-	-	-	-	1	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

SEMESTER-III								
PATTERN RECOGNITION								
Category: PEC								
Course Code	:	P24 SCSB313	CIE	:	50 Marks			
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45(T)	Total	:	100 Marks			
Credits	:	3	SEE Duration	T :	3 Hrs.			

	Course Objectives						
1.	Explain pattern recognition principals						
2.	Able to implement algorithms for Pattern Recognition						
3.	Ability to analyze decision tress.						

Module - 1	No. of Hours
Introduction: Definition of PR, Applications, Datasets for PR, Different paradigms for PR,	
Introduction to probability, events, random variables, Joint distributions and densities, moments.	
Estimation minimum risk estimators, problems	9
Module - 2	No. of Hours
Representation: Data structures for PR, Representation of clusters, proximity measures, size of	
patterns, Abstraction of Data set, Feature extraction, Feature selection, Evaluation	9
Module - 3	No. of Hours
Nearest Neighbour based classifiers & Bayes classifier: Nearest neighbour algorithm, variants of NN	
algorithms, use of NN for transaction databases, efficient algorithms, Data reduction, prototype	
selection, Bayes theorem, minimum error rate classifier, estimation of probabilities, estimation of	9
probabilities, comparison with NNC, Naive Bayes classifier, Bayesian belief network	
Module - 4	No. of Hours
Naive Bayes classifier, Bayesian belief network, Decision Trees: Introduction, DT for PR,	
Construction of DT, splitting at the nodes, Over fitting & Pruning, Examples, Hidden Markov models:	9
Markov models for classification, Hidden Markov models and classification using HMM	
Module - 5	No. of Hours
Clustering: Hierarchical (Agglomerative, single/complete/average linkage, wards, Partitional (Forgy's,	
kmeans, Isodata), clustering large data sets, examples, An application: Handwritten Digit recognition	9

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1 Choose appropriate algorithms for Pattern Recognition.						
CO2	Apply nearest neighbour classifier.					
CO3	Apply Decision tree and clustering techniques to various applications					
CO4	Get acquainted with recent developments in pattern recognition and its applications.					

Referen	Reference Text Books							
1.	Pattern Recognition (An Introduction), V Susheela Devi, M Narsimha Murthy. Universities press, 2011.							
2.	Pattern Recognition & Image Analysis, Earl Gose, Richard Johnsonbaugh, Steve Jost . PH, 1996.							
3.	Pattern Classification, Duda R. O., P.E. Hart, D.G. Stork. John Wiley and sons, 2000							

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Evaluation Criteria	Marks
		Allocation
	CIE - Theory Component (50 Marks)	
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30
b) Seminar Presentation	Seminar presentation 1&2-Average of two Presentations(Each 10 marks)	10
c) Assignment	Assignments 1&2 – Average of two assignments (Each 10 marks)	10

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

Total a + b + c	Sum of Tests + Assignment+ Seminar	50			
Minimum passing marks 50% (25/50) of the maximum marks of CIE					
SEE - Theory Component (50 Marks)					
Minimum passing marks	40% of the maximum marks of SEE. (Scaled Down to 50: Minimum marks: 20/50)	100			
Passing Criteria for CIE +SEE (Theory)	The student secures not less than 50% (50 marks out of 100) in the sum CIE (Continuous Internal Evaluation) and SEE (Semester End Examin together.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	-	-	-	-	1	1
CO4	3	3	3	3	2	-	-	-	-	-	1	1

³⁻Highly mapped 2-Moderately mapped 1-Slightly mapped

SEMESTER-III								
COMPUTER VISION DEG								
	Category: PEC							
Course Code	:	P24SCSC313	CIE	:	50 Marks			
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45(T)	Total	:	100 Marks			
Credits	:	3	SEE Duration	:	3 Hrs.			

	Course Objectives							
1.	Explore the fundamentals of image formation.							
2.	Discuss the major ideas, methods, and techniques of computer vision and pattern recognition.							
3.	Able to implement algorithms and techniques to analyze and interpret the visible world around us.							

Module - 1	No. of Hours
CAMERAS: Pinhole Cameras, Radiometry - Measuring Light: Light in Space, Light Surfaces,	
Important Special Cases, Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their	
Effects, Local Shading Models, Application: Photometric Stereo, Inter-reflections: Global Shading	
Models, Color: The Physics of Color, Human Color Perception, Representing Color, A Model for	9
Image Color, Surface Color from Image Color the File system, Deleting Data, Data Flow: Anatomy of	
a File Read, Anatomy of a File Write.,	
Module - 2	No. of Hours
Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and	
Fourier Transforms, Sampling and Aliasing, Filters as Templates, Edge Detection: Noise, Estimating	9
Derivatives, Detecting Edges, Texture: Representing Texture, Analysis (and Synthesis) Using Oriented	
Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.	
Module - 3	No. of Hours
The Geometry of Multiple Views: Two Views, Stereopsis: Reconstruction, Human Stereposis,	
Binocular Fusion, Using More Cameras, Segmentation by Clustering: What Is Segmentation?, Human	9
Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction,	
Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,	
Module - 4	No. of Hours
Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a	
Probabilistic Inference Problem, Robustness, Segmentation and Fitting Using Probabilistic Methods:	
Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice, Tracking With	9
Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman	
Filtering, Data Association, Applications and Examples.	
Module - 5	No. of Hours
Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the	
Perspective Projection, Affine Cameras and Affine Projection Equations, Geometric Camera	
Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking	
Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile Robot	
Localization, Model- Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency,	
Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification,	9
Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment.	

Course Outcomes: At the end of the course, the students will be able to				
CO1	Implement fundamental image processing techniques required for computer vision			
CO2	Perform shape analysis			
CO3	Implement boundary tracking techniques			
CO4	Apply chain codes and other region descriptors			

Referen	Reference Text Books					
1.	Computer Vision – A Modern Approach, David A. Forsyth and Jean Ponce, PHI Learning, 2009					
2.	Computer and Machine Vision – Theory, Algorithms and Practicalities, E. R. Davies, Elsevier 4 th Edition, 2013					

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Evaluation Criteria	Marks					
	CVP TV C	Allocation					
CIE - Theory Component (50 Marks)							
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50					
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50					
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50					
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30					
b) Seminar Presentation	Seminar presentation 1&2-Average of two Presentations(Each 10 marks)	10					
c) Assignment	Assignments 1&2 – Average of two assignments (Each 10 marks)	10					
Total a + b + c	Sum of Tests + Assignment+ Seminar	50					
Minimum passing marks	50% (25/50) of the maximum marks of CIE						
	SEE - Theory Component (50 Marks)						
Minimum passing marks	40% of the maximum marks of SEE.	100					
Millimum passing marks	(Scaled Down to 50: Minimum marks: 20/50)	100					
Passing Critoria for CIE	The student secures not less than 50% (50 marks out of 100) in the sum	total of the					
Passing Criteria for CIE	CIE (Continuous Internal Evaluation) and SEE (Semester End Examin	ation) taken					
+SEE (Theory)	together.						

SEMESTER-III						
DEEP LEARNING						
		Category: PEC				
Course Code	:	P24SCSD313	CIE	:	50 Marks	
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks	
Total Hours	:	45(T)	Total	:	100 Marks	
Credits	:	3	SEE Duration	:	3 Hrs.	

	Course Objectives					
1.	Discuss the context of neural networks and deep learning					
2.	Have a working knowledge of neural networks and deep learning					
3.	Explore the parameters for neural networks.					

Module - 1	No. of Hours
Machine Learning Basics: Learning Algorithms, Capacity, Overfitting and Underfitting, Hyperparameters and Validation Sets, Estimator, Bias and Variance, Maximum Likelihood Estimation,	
Bayesian Statistics, Supervised Learning Algorithms, Unsupervised Learning Algorithms, Stochastic	9
Gradient Descent, building a Machine Learning Algorithm, Challenges Motivating Deep Learning	9
Module - 2	No. of Hours
Deep Feedforward Networks: Gradient-Based Learning, Hidden Units, Architecture Design,	
BackPropagation. Regularization: Parameter Norm Penalties, Norm Penalties as Constrained	
Optimization, Regularization and UnderConstrained Problems, Dataset Augmentation, Noise	
Robustness, SemiSupervised Learning, Multi-Task Learning, Early Stopping, Parameter Tying and	9
Parameter Sharing, Sparse Representations, Bagging, Dropout	
Module - 3	No. of Hours
Optimization for Training Deep Models: How Learning Differs from Pure Optimization, Challenges	
in Neural Network Optimization, Basic Algorithms. Parameter Initialization Strategies, Algorithms	
with Adaptive Learning Rates. Convolutional Networks: The Convolution Operation, Motivation,	
Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the Basic Convolution	9
Function, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or	
Unsupervised Features	
Module - 4	No. of Hours
Sequence Modelling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent	
Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep	9
Recurrent Networks, Recursive Neural Networks. Long short-term memory	
Module - 5	No. of Hours
Practical Methodology: Performance Metrics, Default Baseline Models, Determining Whether to	
Gather More Data, Selecting Hyperparameters, Debugging Strategies, Example: Multi-Digit Number	9
Recognition. Applications: Vision, NLP, Speech.	

Course O	Course Outcomes: At the end of the course, the students will be able to					
CO1	Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.					
CO2	Implement deep learning algorithms and solve real-world problems.					
CO3	Execute performance metrics of Deep Learning Techniques.					
CO4	Compare modeling aspects of various neural network architectures					

Text Bo	Text Books						
1.	Deep Learning, Lan Good fellow and YoshuaBengio, MIT Press https://www.deeplearn ingbook.org/ 2016.						
2.	Neural Networks: Asystematic Introduction, Raúl Rojas, 1996						
3.	Pattern Recognition and machine Learning, Chirstopher Bishop, 2007.						

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of M.Tech in Computer Science and Engineering

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Component Evaluation Criteria							
		Allocation						
	CIE - Theory Component (50 Marks)							
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50						
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50						
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50						
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30						
b) Seminar Presentation Seminar presentation 1&2-Average of two Presentations(Each 10 marks)								
c) Assignment	Assignments 1&2 – Average of two assignments (Each 10 marks)	10						
Total a + b + c	Sum of Tests + Assignment+ Seminar	50						
Minimum passing marks	50% (25/50) of the maximum marks of CIE							
	SEE - Theory Component (50 Marks)							
Minimum passing marks	40% of the maximum marks of SEE.	100						
Willimium passing marks	(Scaled Down to 50 : Minimum marks : 20/50)	100						
Passing Criteria for CIE +SEE (Theory)	The student secures not less than 50% (50 marks out of 100) in the sum CIE (Continuous Internal Evaluation) and SEE (Semester End Examin together.							

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	-	-	-	-	1	1
CO4	3	3	3	3	2	-	-	-	-	-	1	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

SEMESTER-III							
BLOCK CHAIN TECHNOLOGY							
		Category: PEC					
Course Code	:	P24SCSE313	CIE	:	50 Marks		
Teaching Hours L:P: SDA	:	3:0:0	SEE	:	50 Marks		
Total Hours : 45(T) Total : 100 Marks							
Credits							

	Course Objectives					
1.	Explain the strong technical knowledge of Blockchain technologies.					
2.	Analyzing the blockchain decentralization and cryptography concepts.					
3.	Explore the driving force behind the cryptocurrencyBitcoin, along with the Decentralization.					

Module - 1	No. of Hours					
Blockchain 101: Distributed systems, History of blockchain, Introduction to blockchain, Types of						
blockchain, CAP theorem and blockchain, Benefits and limitations of blockchain						
Module - 2	No. of Hours					
Decentralization and Cryptography: Decentralization using blockchain, Methods of decentralization,						
Routes to decentralization, Decentralized organizations. Cryptography and Technical Foundations:						
Cryptographic primitives, Asymmetric cryptography, Public and private keys	9					
Module - 3						
Bitcoin and Alternative Coins A: Bitcoin, Transactions, Blockchain, Bitcoin payments B: Alternative						
Coins, Theoretical foundations, Bitcoin limitations, Namecoin, Litecoin, Primecoin, Zcash	9					
Module - 4	No. of Hours					
Smart Contracts and Ethereum 101: Smart Contracts: Definition, Ricardian contracts. Ethereum						
101:Introduction, Ethereumblockchain, Elements of the Ethereumblockchain, Precompiled contracts	9					
Module - 5						
Alternative Blockchains: Blockchains, Blockchain-Outside of Currencies: Internet of Things,						
Government, Health, Finance, Media	9					

Course O	Course Outcomes: At the end of the course, the students will be able to							
CO1	Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.							
CO2	Implement deep learning algorithms and solve real-world problems.							
CO3	Execute performance metrics of Deep Learning Techniques.							
CO4	Compare modeling aspects of various neural network architectures							

Te	ext Boo	oks								
	1.	Bitcoin and Cryptocurrency Technologies, Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew								
		Miller, Steven Goldfeder, Princeton University, 2016								

Reference Text Books										
1.	Blockchain Basics: A Non-Technical Introduction in 25 Steps, Daniel Drescher, Apress, First Edition, 2017									
2.	Mastering Bitcoin: Unlocking Digital Cryptocurrencies, Andreas M. Antonopoulos, O'Reilly Media, First									
	Edition, 2014									

ASSESMENT STRUCTURE (BOTH CIE & SEE)

Component	Evaluation Criteria	Marks						
	CIE - Theory Component (50 Marks)							
Internal Assessment Test 1	Covers 30% of the syllabus (50 marks, 1:30 -hour duration)	50						
Internal Assessment Test 2	Covers 70% of the syllabus (50 marks, 1:30 -hour duration)	50						
Internal Assessment Test 3	Covers 100% of the syllabus (50 marks, 1:30 -hour duration)	50						
a) Total Internal Assessment (Scaled Down)	Best of 2 and Average of 2 Tests	30						

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

b) Seminar Presentation	Seminar presentation 1&2-Average of two Presentations(Each 10 marks)	10
c) Assignment	Assignments 1&2 – Average of two assignments (Each 10 marks)	10
Total a + b + c	Sum of Tests + Assignment+ Seminar	50
Minimum passing marks	50% (25/50) of the maximum marks of CIE	
	SEE - Theory Component (50 Marks)	
Minimum passing marks	40% of the maximum marks of SEE. (Scaled Down to 50: Minimum marks: 20/50)	100
Passing Criteria for CIE +SEE (Theory)	The student secures not less than 50% (50 marks out of 100) in the sum CIE (Continuous Internal Evaluation) and SEE (Semester End Examin together.	

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	-	1	1
CO2	3	3	3	3	2	-	-	-	-	-	1	1
CO3	3	3	3	3	2	-	ı	-	-	-	1	1
CO4	3	3	3	3	2	-	-	-	-	-	1	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of M.Tech in Computer Science and Engineering

SEMESTER-III										
	PROJECT WORK PHASE -I									
		Category: I	PROJ							
Course Code	:	P24SCSP304	CIE	:	50 Marks					
Teaching Hours L:P:S	:	0:6:0	SEE	:	50 Marks					
Total Hours : 45 Total : 100 Marks										
Credits	:	10	SEE Duration	:	3 Hrs.					

	Course Objectives
1.	Support independent learning
2.	Guide to select and utilize adequate information from varied resources maintaining ethics.
3.	Guide to organize the work in the appropriate manner and present information (acknowledging the sources)
	clearly.
4.	Develop interactive, communication, organization, time management, and presentation skills.
5.	Impart flexibility and adaptability.
6.	Inspire independent and team working
7.	Expand intellectual capacity, credibility, judgment, intuition
8.	Adhere to punctuality, setting and meeting deadlines.
9.	Instil responsibilities to oneself and others.
10.	Train students to present the topic of project work in a seminar without any fear, face audience confidently,
	enhance communication skill, involve in group discussion to present and exchange ideas.

Project Phase-1 Students in consultation with the guide/s shall carry out literature survey/ visit industries to finalize the topic of the Project. Subsequently, the students shall collect the material required for the selected project, prepare synopsis and narrate the methodology to carry out the project work.

Seminar: Each student, under the guidance of a Faculty, is required to

- Present the seminar on the selected project orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit two copies of the typed report with a list of references.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

Course O	Course Outcomes: At the end of the course, the students will be able to							
CO1	Demonstrate a sound technical knowledge of their selected project topic							
CO2	CO2 Undertake problem identification, formulation, and solution.							
CO3	Design engineering solutions to complex problems utilising a systems approach							
CO4	Communicate with engineers and the community at large in written an oral forms							
CO5	Demonstrate the knowledge, skills and attitudes of a professional engineer.							

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2						1	1
CO2	3	3	3	3	2						1	1
CO3	3	3	3	3	2						1	1
CO4	3	3	3	3	2						1	1
CO5	3	3	3	3	2						1	1

3-Highly mapped 2-Moderately mapped 1-Slightly mapped

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of M.Tech in Computer Science and Engineering

SEMESTER-IV										
	PROJECT WORK PHASE - II									
		Category: Pl	ROJ							
Course Code	:	P24SCSP401	CIE	:	100 Marks					
Teaching Hours L:P: SDA	:	0:8:0	SEE	:	100Marks					
Total Hours	:	-	Total	:	200 Marks					
Credits	:	10	SEE Duration	:	3					

Course Objectives:

- To support independent learning.
- To guide to select and utilize adequate information from varied resources maintaining ethics.
- To guide to organize the work in the appropriate manner and present information (acknowledging the sources) clearly.
- To develop interactive, communication, organization, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgment, intuition.
- To adhere to punctuality, setting and meeting deadlines
- To instill responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas

Project Work Phase - II:

- Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.
- Follow the Software Development life cycle
- Data Collection ,Planning
- Design the Test cases
- Validation and verification of attained results
- Significance of parameters w.r.t scientific quantified data.
- Publish the project work in reputed Journal.

Course Outcomes: At the end of the course, the students will be able to

- Present the project and be able to defend it.
- Make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.
- Habituated to critical thinking and use problem solving skills
- Communicate effectively and to present ideas clearly and coherently in both the written and oral forms.
- Work in a team to achieve common goal.
- Learn on their own, reflect on their learning and take appropriate actions to improve it. Identify areas for future knowledge and skill development.
- Expand intellectual capacity, credibility, judgment, intuition.
- Acquire the knowledge of administration, marketing, finance and economics

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2						1	1
CO2	3	3	3	3	2						1	1
CO3	3	3	3	3	2						1	1
CO4	3	3	3	3	2						1	1
CO5	3	3	3	3	2						1	1

3-Highly mapped, 2-Moderately mapped, 1-Slightly mapped

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of M.Tech in Computer Science and Engineering

SEMESTER-IV										
INTERNSHIP										
Category: INT										
Course Code	:	P24SCSI402	CIE	:	50 Marks					
Teaching Hours L:P: SDA	:	-	SEE	:	50 Marks					
Total Hours	:	-	Total	:	100 Marks					
Credits	:	11	SEE Duration	:	3 Hrs.					

Course Objectives:

Internship/Professional practice provide students the opportunity of hands-on experience that include personal training, time and stress management, interactive skills, presentations, budgeting, marketing, liability and risk management paperwork, equipment ordering, maintenance, responding to emergencies etc. The objective are further:

- 1. To put theory into practice.
- 2. To expand thinking and broaden the knowledge and skills acquired through course work in the field.
- 3. To relate to, interact with, and learn from current professionals in the field.
- 4. To gain a greater understanding of the duties and responsibilities of a professional.
- 5. To understand and adhere to professional standards in the field.
- 6. To gain insight to professional communication including meetings, memos, reading, writing, public speaking, research, client interaction, input of ideas, and confidentiality.
- 7. To identify personal strengths and weaknesses.
- 8. To develop the initiative and motivation to be a self-starter and work independently.

Internship/Professional practice:

Students under the guidance of internal guide/s and external guide shall take part in all the activities regularly to acquire as much knowledge as possible without causing any inconvenience at the place of internship.

Seminar: Each student, is required to

- Present the seminar on the internship orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit the report duly certified by the external guide.
- The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

Course Outcomes: At the end of the course, the students will be able to

- Gain practical experience within industry in which the internship is done.
- Acquire knowledge of the industry in which the internship is done.
- Apply knowledge and skills learned to classroom work.
- Develop a greater understanding about career options while more clearly defining personal career goals.
- Experience the activities and functions of professionals.
- Develop and refine oral and written communication skills.
- Identify areas for future knowledge and skill development.
- Expand intellectual capacity, credibility, judgment, intuition.
- Acquire the knowledge of administration, marketing, finance and economics.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of M.Tech in Computer Science and Engineering

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2						1	1
CO2	3	3	3	3	2						1	1
CO3	3	3	3	3	2						1	1
CO4	3	3	3	3	2						1	1
CO5	3	3	3	3	2						1	1

³⁻Highly mapped 2-Moderately mapped 1-Slightly mapped