

RAJARAJESWARI COLLEGE OF ENGINEERING

An Autonomous Institution

Under VTU, Approved by AICTE, UGC & GoK

No. 14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru

SCHEME & SYLLABUS

UG PROGRAM DEPARTMENT OF R & A

3rd and 4th Semester

Academic Year 2025-26 (2024 Scheme)

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru–560074

Robotics and Automation

Bachelor of Engineering (B.E)

Scheme and Syllabus of III & IV Semester (2024 Scheme)

VISION

To empower young minds through technology, research and innovation, to produce technically competent and socially responsible professionals in higher education.

MISSION

- To deliver excellence in education through innovative teaching, impactful research, and continuous skill development, preparing students to meet global challenges with technical expertise and ethical responsibility.
- To foster a transformative learning environment that integrates technology, research and practical experience, empowering students to become skilled professionals and socially conscious leaders.
- 3. To cultivate a culture of lifelong learning and professional excellence by encouraging creativity, research, and community engagement, equipping students with the skills to thrive in a dynamic world.
- 4. To provide a holistic educational experience that combines advanced technology, hands-on research, and community-focused learning, shaping students into competent, ethical professionals who contribute positively to society.

QUALITY POLICY

Rajarajeswari College of Engineering is committed to imparting quality technical education that nurtures competent, ethical professionals with global relevance. We ensure academic excellence through a dynamic, outcome-based curriculum, experienced faculty, and cutting-edge infrastructure. Continuous improvement is driven by innovation, research and strong industry collaboration. We foster holistic development and a progressive environment that supports lifelong learning, teamwork, and professional growth.

CORE VALUES

Academic Excellence, Integrity, Innovation, Global Competence, Continuous Improvement.

Robotics and Automation

DEPARTMENT VISION

To develop technically skilled Robotics and Automation engineers with the systems & multidisciplinary approach in-line with the dynamic technologies for the competitive solution to the society.

DEPARTMENT MISSION

- 1. To provide a technical education through an effective teaching-learning process to meet the industry requirement.
- 2. To teach the process of designing, creating, and using robots to perform a certain task in problem-solving skills up-gradation of knowledge through a project-based approach in collaboration with industries.

PROGRAM OUTCOMES (POs)

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)

PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems /components / processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)

PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modeling, analysis & interpretation of data to provide valid conclusions. (WK8).

PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modeling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)

PO6: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, WK7).

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)

PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences

PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.

PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Develop skilled engineers with a solid foundation in Robotics and Automation, encompassing core competencies in diverse areas such as robotics programming, simulations, robot anatomy, and engineering principles.

PEO2: Thrive in their professional careers by delivering engineering solutions and showcasing technical expertise gained through continuous learning in the realm of robotics and automation.

PEO3: Create, design, and program robots for various engineering and societal applications using cutting-edge tools and technologies, while prioritizing solutions that are technologically advanced, economically viable, environmentally sustainable, and socially acceptable.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Develop Robotics and Automation systems that align with evolving industry demands, ensuring graduates are prepared to meet current and future industry requirements.

PSO2: Apply automation systems effectively in various domains such as manufacturing, healthcare, industrial engineering, and safety, addressing specific needs and enhancing efficiency and safety in these areas.

INDEX

III Semester							
Sl. No.	Course Code	Course Title	Page No.				
1.	B24MZ301	Mathematics-III for ME	5				
2.	B24RA302	Solid & Fluid Mechanics	7				
3.	B24EE303	Analog and Digital Electronics	10				
4.	B24RA304	Robotic Fabrication	13				
5.	B24RA305L	Modeling and Design lab	17				
6.	B24RA361	Basic Communication Systems	20				
7.	B24RA362	Robot Mechanics and Control	22				
8.	B24RA363	Material Science	25				
9.	B24EC364	OOPs with C++	27				
10.	B24EC381	C++ programming Lab	30				
11.	B24RA382	Virtual Reality and App development	32				
12	B24RA383	Materials Testing Lab	34				
13.	B24RA384	Applications of MATLAB	36				

IV Semester							
Sl. No.	Sl. No. Course Code Course Title						
1.	B24RA401	Theory of Applied Robotics	38				
2.	B24RA402	Sensors and Transducers	41				
3.	B24RA403	Microcontrollers	43				
4.	B24RA404	Measurement Systems	47				
5.	B24RA405L	Robot Programming and Simulation Lab	51				
6.	B24RA461	Digital Communication	53				
7.	B24RA462	Smart Materials and Structures	55				
8.	B24RA463	Basic Control Systems	58				
9.	B24EC464	Java Programming	60				
10.	B24EC481	Programmable Logic Controllers	63				
11.	B24RA482	Introduction to AI & ML	65				
12	B24RA483	Principles of Robotics	67				
13.	B24EE484	Arduino & Raspbeery Pi lab	69				

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Scheme of Teaching and Examinations - 2024

(Effective from the Academic Year 2025-26)

Semester: III

							Teaching Hours / Week & C				Credits Examination				
S.No	No Course Category and Course Code		Course Title	TD / PSB	Lecture	Tutorial	Practical	SDA	Credits	CIE Marks	SEE Duration Hrs	E Marks	Total Marks		
					L	Т	P	S		CI	D	SEE	Tot		
1.	BSC	B24MZ301	Mathematics-III for ME (Common to R&A, CV)	Maths	3	0	0	0	3	50	3	50	100		
2.	PCC	B24RA302	Solid & Fluid Mechanics	R&A	3	0	0	0	3	50	3	50	100		
3.	IPCC	B24EE303	Analog and Digital Electronics (Common to R&A, EEE)	EEE	3	0	2	0	4	50	3	50	100		
4.	IPCC	B24RA304	Robotic Fabrication	R&A	3	0	2	0	4	50	3	50	100		
5.	PCCL	B24RA305L	Modeling and Design Lab	R&A	0	0	2	0	1	50	3	50	100		
6.	ESC	B24YY36X	ESC/ETC/PLC - III	R&A	3	0	0	0	3	50	3	50	100		
7.	UHV	B24SCK307	Social Connect and Responsibility	Any Dept.	0	0	2	0	1	50	3	50	100		
8.	AEC/	B24YY38X	Ability Enhancement Course / Skill Enhancement	R&A	1	0	0	0	1	50	1	50	100		
	SEC		Course – III (Theory/Lab)		0	0	2		_		3		200		
9.	NCMC	B24NCK39X	National Service Scheme / National Cadet Corps / Physical Education / Yoga / Music	HSMC	1	0	0		PP	50		-	50		
	•	•		•	•	•	· ·	ГОТАL	20	450		400	850		

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Scheme of Teaching and Examinations - 2024

(Effective from the Academic Year 2025-26)

Engineering Science Course / Emerging Technology Course / Programming Language Course (ESC/ETC/PLC) - III							
B24RA361	Basic Communication Systems	B24RA362	Robot Mechanics and Control				
B24RA363	Material Science	B24EC364	OOPs with C++ (Common to ECE, RA)				

Ability Enhancement Course / Skill Enhancement Course (AEC/SEC) – III							
B24EC381	C++ programming Lab (Common to ECE, RA)	B24RA382	Virtual Reality and App development				
B24RA383	Materials Testing Lab	B24RA384	Applications of MATLAB				
	Non Credit Mandator	y Courses (NCMC))				
B24NCK391	National Service Scheme (NSS)	B24NCK392	National Cadet Corps (NCC)				
B24NCK393	Physical Education (PE)	B24NCK394	Yoga				
B24NCK395	Music						

All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE), National Cadet Corps (NCC), Music and Yoga (YOG) with the concerned coordinator of the course during the first week of III/IV/V/VI semesters. Colleges are required to submit the Continuous Internal Evaluation (CIE) marks for the activities completed by students under selected course each semester. The students should be allowed to engage in different activities/courses each semester. For example, a student who participates in sports in the 3rd semester could choose to undertake NSS in the next semester and Yoga in another semester. This approach aligns with the student-centric focus of the National Education Policy (NEP) 2022 and helps distribute the workload related Physical Education/NSS/Yoga/NCC/Music of more evenly across different departments. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

HoD Dean-Academics Principal

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Scheme of Teaching and Examinations - 2024

(Effective from the Academic Year 2025-26)

Semester: IV

			Teaching Hours / Week & C					Credits	edits Examination				
S. No		ourse Category ad Course Code Course Title		TD / PSB	Lecture	Tutorial	Practical	SDA	Credits	IE Marks	SEE Duration Hrs	SEE Marks	Total Marks
				_	L	Т	P	S		CI	Α	SE	Tot
1.	PCC	B24RA401	Theory of Applied Robotics	R&A	3	0	0	0	3	50	3	50	100
2.	PCC	B24RA402	Sensors and Transducers	R&A	3	0	0	0	3	50	3	50	100
3.	IPCC	B24RA403	Microcontrollers (Common to RA, EEE)	R&A	3	0	2	0	4	50	3	50	100
4.	IPCC	B24RA404	Measurement Systems	R&A	3	0	2	0	4	50	3	50	100
5.	PCCL	B24RA405L	Robot Programming and Simulation Lab	R&A	0	0	2	0	1	50	3	50	100
6.	ESC	B24 YY46X	ESC/ETC/PLC - IV	EC/R&A/ AI			3	50	3	50	100		
7.	UHV	B24UHK407	Universal Human Values	Any Dept.	1	0	0	0	1	50	1	50	100
8.	AEC/ SEC	B24YY48X	Ability Enhancement Course / Skill Enhancement Course – III (Theory/Lab)	R&A	0	0	0 2	0	1	50	3	50	100
9.	NCMC	B24NCK49X	National Service Scheme / National Cadet Corps / Physical Education / Yoga / Music	HSMC	1	0	0		PP	50		-	50
	TOTAL 20 450 400 850												

BSC: Basic Science Course, HSMC: Humanity, Social sciences including Management courses, IPCC: Integrated Professional Core Course, PCC: Professional Core Course, PCCL: Professional Core Course, PCCL: Professional Core Course, PCC: Professional Cours

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Scheme of Teaching and Examinations - 2024

(Effective from the Academic Year 2025-26)

Engineering Science Course / Emerging Technology Course / Programming language Course (ESC/ETC/PLC) - IV							
B24RA461	Digital Communication	B24RA462	Smart Materials and Structures				
B24RA463 Basic Control Systems B24EC464 Java Programming (Common t R&A)							

Ability Enhancement Course / Skill Enhancement Course (AEC/SEC) – IV								
B24EC481	Programmable Logic Controllers (Common to ECE, R&A)	B24RA482	Introduction to AI & ML					
B24RA483	Principles of Robotics	B24EE484	Arduino & Raspberry Pi lab (Common to ECE,EEE, R&A)					

Non Credit Mandatory Courses (NCMC)								
B24NCK491 National Service Scheme (NSS) B24NCK492 National Cadet Corps (NCC)								
B24NCK493	Physical Education (PE)	B24NCK494	Yoga					
B24NCK495	Music							

All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE), National Cadet Corps (NCC), Music and Yoga (YOG) with the concerned coordinator of the course during the first week of III/IV/V/VI semesters. Colleges are required to submit the Continuous Internal Evaluation (CIE) marks for the activities completed by students under selected course each semester. The students should be allowed to engage in different activities/courses each semester. For example, a student who participates in sports in the 3rd semester could choose to undertake NSS in the next semester and Yoga in another semester. This approach aligns with the student-centric focus of the National Education Policy (NEP) 2022 and helps distribute the workload related Physical Education/NSS/Yoga/NCC/Music of more evenly across different departments. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

HoD Dean-Academics Principal

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Robotics and Automation

III - Semester Syllabus

SEMESTER-III								
	MATHEMATICS-III FOR ME							
		Category: BS						
		(COMMON TO RE	&A, CV)					
Course Code	:	B24MZ301	CIE	:	50 Marks			
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45(T)	Total	:	100 Marks			
Credits	:	3	SEE Duration	:	3 Hrs			

	Course Objectives						
1.	Explain the basic concepts of probability, random variables, probability distribution						
2.	Calculate and interpret correlation coefficients to determine the strength and direction of linear relationships						
	between variables.						
3.	To develop mathematical model to integrate some non integrable functions using special theorems.						
4.	To perform complex variables and to apply in signal transformation.						
5.	Ability to formulate a variational problem for a given geometric setting.						

Module-1: Probability distribution	No. of Hours
Review of basic probability theory. Random variables (discrete and continuous), probability mass and density functions. Mathematical expectation, mean and variance. Binomial, Poisson and normal distributions- problems (derivations for mean and standard deviation for Binomial and Poisson distributions only)-Illustrative examples. Exponential distribution.	9
Module-2: Curve fitting & Statistical Methods	No. of Hours
Curve Fitting: Curve fitting by the method of least squares-fitting the curves of the form: $y = ax + b$, $y = ax^2 + bx + c$ and $y = ax^b$. Statistical methods: Introduction to Moments, Skewness, Kurtosis and problems. Karl Pearson's coefficient of correlation and lines of regression.	9
Module-3: Complex Variable -I	No. of Hours
Review of a function of a complex variable, limits, continuity, and differentiability. Analytic function and connected theorem and properties, Cauchy-Riemann equations in Cartesian and polar forms. Transformations: Conformal transformations, discussion of transformations: $w = z^2$, $w = e^z$ and bilinear transformations-problems. Application: Analyzing alternating current (AC) circuits, signal processing.	9
Module-4: Complex Variable -II	No. of Hours
Complex line integral ,properties of Complex line integral, Cauchy's theorem ,consequences of cauchy's theorem, cauchy's integral formula, generalized cauchy's integral formula, Laurent's theorem-Laurent's series , singularity and Residue, formulae for the residue at the pole, Cauchy's Residue theorem (without proof) and problems. Application: Calculating electric and magnetic fields, Fluid Dynamics.	9
Module-5: Calculus of Variations:	No. of Hours
Introduction to variation of functionals, extremal of functional, Euler equation—special cases, problems. Geodesics, Hanging cable and Brachistochrone problems. Exploring geodesics graphically using MATLAB.	9

Cours	Course Outcomes: At the end of the course, the students will be able to									
CO1	Explain the basic concepts of probability, random variables, probability distribution									
CO2	Make use of correlation and regression analysis to fit a suitable mathematical model for the statistical data.									
CO3	Illustrate the fundamental concepts of multivariate statistics, complex analysis, partial differential equations and									
	variational problems									
CO4	Understand the concept of complex variables and their applications in signal transformation.									
CO5	Demonstrate the ideas of complex differentiation and integration for solving related problems through									
	theoretical approach.									

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Text Bo	oks
1.	B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44 th Ed.2018
2.	E.Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 8 th Ed.(Reprint), 2016

Reference Text Books									
1.	H. K. Dass, "Advanced Engineering Mathematics" S. Chand publication.								
2.	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics", 6 th Edition								
3.	B.V. Ramana: "Higher Engineering Mathematics" 11 th Edition, Tata McGraw-Hill, 208.								

Web li	nks and Video lectures (e-Resources)
1.	https://nptel.ac.in/courses/12286025
2.	VTU EDUSAT PROGRAMME – 20
3.	http://www.class-central.com/subject/math(MOOCs)

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A** is **Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO8	PO11
CO											
CO1	3	3	3	2	-	-	-	-	1	-	2
CO2	3	3	3	2	-	-	-	-	1	-	2
CO3	3	3	3	2	-	-	-	-	-	-	2
CO4	3	3	3	2	-	-	-	-	-	-	2
CO5	3	3	3	2	-	-	-	-	-	-	2

Level 3 - High, Level 2 - Moderate, Level 1 - Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Robotics and Automation

SEMESTER-III										
SOLID & FLUID MECHANICS Category: PCC										
Course Code	:	B24RA302	CIE	:	50 Marks					
Teaching Hours/Week (L:T:P)	:	3:0:0	SEE	:	50 Marks					
Total Hours	:	45(T)	Total	:	100 Marks					
Credits	:	3	SEE Duration	:	3 Hrs					

	Course Objectives									
1.	Gain knowledge of linear elastic properties and stress train relations.									
2.	Derive and solve problems on Principal stresses developed in structures.									
3.	Compute the stress strain for bars, beams, shafts, and column and to apply the concept of Dynamic similarity and to apply it to experimental modeling.									
4.	Gain knowledge of basic properties of fluids, fluid statics.									
5.	To apply conservation of mass, momentum and energy equation and to determine the discharge of fluid flow.									

Module-1: Simple Stress and Strain	No. of Hours
Introduction, Concept of Stress and Strain, Linear elasticity, Hooke's Law and Poisson's ratio. Extension / Shortening of a bar, bars with varying cross sections (circular and rectangular), Elongation due to self-weight, Principle of super position. Volumetric strain, expressions for volumetric strain for bars with uniform circular and rectangular cross sections. Simple shear stress and shear strain, Elastic Constants (No derivation for relationship between elastic constants)	9
Module-2: Compound Stresses	No. of Hours
Introduction, Concept of Plane stress, Stress tensor for plane stress, stresses on inclined sections, principal stresses and maximum shear stresses, Mohr's circle for plane stress.	9
Module-3: Torsion of Circular Shafts and Columns	No. of Hours
Torsion of Circular Shafts: Introduction, Torsion equation –assumptions and derivation, Torsional rigidity / Stiffness of shafts. Power transmitted by solid and hollow circular shafts, Simple numerical problems. Columns: Introduction, End conditions, Assumptions in deriving Euler's equations, Sign Conventions for bending moments, Euler's formulas (no derivation) for axially loaded elastic long columns, Limitations of Euler's theory, Rankine's formula.	
Module-4: Properties of Fluids and Fluid Statics	No. of Hours
Properties of Fluids: Introduction, Properties of fluids, viscosity, thermodynamic properties, surface tension, capillarity, vapour pressure and cavitation. Fluid Statics: Fluid pressure at a point, Pascal's law, pressure variation in a static fluid, absolute, gauge, Atmospheric and vacuum pressures, simple manometers and differential manometers. Total pressure and center of pressure on submerged plane surfaces; horizontal, vertical and inclined plane surfaces, curved surface submerged in liquid.	9
Module-5: Fluid Kinematics and Fluid Dynamics	No. of Hours
Fluid Kinematics: Types of fluid flow, continuity equation in 2D and 3D (Cartesian Coordinates only), velocity and acceleration Fluid Dynamics: Introduction equation of motion, Euler's equation of motion, and Bernoulli's equation from first principle sandals of romEuler's equation, limitations of Bernoulli's equation.	

Course	Course Outcomes: At the end of the course, the students will be able to							
CO1	Gain the knowledge of properties, and stress-strain relations in linear elastic solid members and fluids.							
CO2	Determine the stress & strain for simple stresses, compound stresses.							
CO3	Apply the knowledge of mechanics of materials on applications like shafts & columns.							
CO4	Apply the concepts of fluid statics, kinematics and dynamics while addressing problems in engineering and to determine the fluid flow through open and closed channel.							

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Ī	Text Books								
	1.	Strength of Materials by R K Rajput, S. Chandand Company Pvt, 2014.							
Ī	2.	Strength of Materials", S.S.Rattan, TataMcGrawHill, 2009							
ĺ	3.	A Text Book of Fluid Mechanics and Hydraulic Machines Dr. R. K Bansal Laxmi Publishers							
ĺ	4.	Mechanics of Materials by JBKD as & Dr. PL Srinivasa Murthy.							

	Reference Books									
	1.	Mechanics of Materials by RC Hibbeler, Pearson, Latestedition								
	2.	Fundamentals of Strength of Materials by PN Chandramouli PHI LearningPvt.Ltd, 2013.								
Ī	3.	"FluidMechanics(SIUnits)"YunusA.CengelJohnM.Cimbala,TataMcGrawHill 3 rd Edition, 2014.								

Web links and Video lectures (e-Resources)

https://sm-nitk.vlabs.ac.in/List%20of%20experiments.html

https://archive.nptel.ac.in/courses/112/105/112105269/

https://archive.nptel.ac.in/courses/112/107/112107146/

https://nptel.ac.in/courses/112107146

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A** is **Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	2	-	1	1	-	1	-	-	1
CO2	3	2	2	-	1	1	-	1	-	-	1
CO3	3	2	2	-	1	1	-	1	-	-	1
CO4	3	2	2	-	1	1	-	1	-	-	1

Level 1-High, Level 2-Moderate, Level3- Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-III						
	ANALOG AND DIGITAL ELECTRONICS					
		Category: IP				
		(Common to R&	A, EEE)			
Course Code	:	B24EE303	CIE	:	50 Marks	
Teaching Hours/Week (L:T:P)	:	3:0:2	SEE	:	50 Marks	
Total Hours	:	45(T)+15(P)	Total	:	100 Marks	
Credits	:	4	SEE Duration	:	3 Hrs	

	Course Objectives
1.	To understand the basics and applications of diodes and transistors
2.	To understand FETs and MOSFETs with their characteristics and biasing, and to analyze and design various
	feedback and oscillator circuits for electronic applications.
3.	To Illustrate simplification of Algebraic equations using Karnaugh Maps and Quine-McClusky Techniques.
4.	To Design Decoders, Encoders, Digital Multiplexer, Adders, Subtractors and Binary Comparators.
5.	To Describe Latches and Flip-flops, Registers and Counters.

Module – 1	No. of Hours	
Diode Applications - Clipping circuits, Clamping Circuits, Half wave rectifier, Full wave rectifier, rectifier with capacitor filter. BJTs: Transistor characteristics: The junction transistor, transistor as an amplifier, CB, CE, CC configurations, comparison of transistor configurations, the operating point, self-bias or Emitter bias, bias compensation, thermal runaway and stability, transistor at low frequencies, CE amplifier response, gain bandwidth product, Emitter follower, RC coupled amplifier, two cascaded CE and multistage CE amplifiers.	9	
Module - 2	No. of Hours	
Junction Field Effect Transistor (FET): FET Construction, Principle of Operation, VI Characteristics, MOSFET- Depletion and Enhancement MOSTET, FET biasing. Feedback and Oscillator Circuits: Feedback concepts, Feedback connection types, Oscillator operation, RC Phase shift oscillator, Wein bridge oscillator, Tuned Oscillator circuit, Crystal oscillator.	9	
Module - 3	No. of Hours	
Principles of combinational logic: Definition of combinational logic, canonical forms, Generation of switching equations from truth tables, Karnaugh maps-3,4,5 variables, Incompletely specific functions (Don't care terms) Simplifying Max term equations, Quine-McClusky techniques 4 variables		
Module-4		
Analysis and design of combinational logic: Decoders, Encoders, Digital multiplexers, Adders and		
subtractors, Look ahead carry, Binary comparators, Programmable Logic Devices: PLA, PAL		
Module-5		
Flip-Flops and its Applications: Basic Bitable elements, Latches, The master-slave flip flops (pulse-triggered flip-flops): SR flip-flops, JK flip-flops, Characteristic Equations, Shift Registers, Binary ripple counters and synchronous binary counters	9	

Course	Course Outcomes: At the end of the course, the students will be able to				
CO1	Analyse clippers, clampers, and different biasing of transistors				
CO2	Understand and analyze FETs and MOSFETs, their biasing, and apply feedback principles to design and				
	analyze various oscillator circuits				
CO3	Simplify digital circuits using Karnaugh Map, and Quine-McClusky Method				
CO4	Design the combinational logic circuits				
CO5	Explain flip flops and make use in designing different registers and counters.				

Text Bo	oks
1.	Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit theory", Pearson, 10 th Edition, 2012, ISBN: 978-81-317-6459-6.
2.	John M Yarbrough,-Digital Logic Applications and Design, Thomson Learning, 2001.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Reference Books					
1.	Analog Electronic Circuits: A simplified approach by U.B. Mahadevaswamy, Pearson Education India, 2010				
2.	Donald D. Givone, —Digital Principles and Design, McGraw Hill, 2002.				
3.	David A. Bell, Electronic Devices and Circuits, 5 th Edition, Oxford University Press, 2008				

PRACTICAL COMPONENTS OF IPCC

Sl. No	Experiments
1.	To construct and observe clipping and clamping circuits for different configurations
2.	To construct and find bandwidth of RC coupled amplifier
3.	To conduct an experiment on a given JFET and obtain 1)Drain Characteristics 2) Transfer Characteristics
4.	To construct and check oscillation frequency for RC phase shift oscillator.
5.	Design and implement (i) Half Adder & Full Adder using i) basic gates. ii) NAND gates (ii) Half
	Subtractor& Full Subtractor using i) basic gates ii) NAND gates.
6.	Design and implement 4-bitParallelAdder/Subtractor using IC 7483.
7.	Design and Implementation of 1-bit Comparator
8.	Realize4-variable function using IC74151 (8:1MUX)
9.	Realize the following flip-flops using NAND Gates. JK, D Flip-Flops
10.	Realize 4 bit Shift Registers: SISO, SIPO, PIPO, PISO
11.	Realize 3 bit synchronous counter using flip flops
12.	To construct and observe clipping and clamping circuits for different configurations

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.

Transition of Transition

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

		Theory		
IA Test	Exam conducted	Scaled down to	Average of best	Total
	for		two tests	
IA-1	50	30		
IA-2	50	30	30	
IA-3	50	30		50/2=25
Two Assignments	2×10=20	10	10	
Two Quizzes	2×10=20	10	10	

LAB						
Each experiments evaluated for 10 marks	Scaled down to 05 marks	5+20=25				
Exam conducted for 50	Scaled down to 20					
	Each experiments evaluated for 10 marks	Each experiments evaluated for 10 marks Exam conducted for 50 Scaled down to 20				

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.
- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	2	2	-	2	-	1	1	1	-	2
CO2	3	3	3	-	2	-	1	1	1	-	2
CO3	3	3	2	-	3	-	1	1	1	-	2
CO4	3	2	3	-	3	-	1	1	1	-	2
CO5	3	2	2	-	2	-	1	1	1	-	2

Level 3 - High, Level 2 - Moderate, Level 1 - Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-III						
	ROBOTIC FABRICATION					
		Category: IPCC				
Course Code	:	B24RA304	CIE	:	50 Marks	
Teaching Hours L: T: P	:	3:0:2	SEE	:	50 Marks	
Total Hours	:	45(T) +15(P)	Total	:	100 Marks	
Credits	:	4	SEE Duration	:	3 Hrs	

	Course Objectives
1.	Introduce students to different methods of fabrication used in the manufacturing of robotic components.
2.	Develop an understanding of the materials used in robotic component fabrication and their properties.
3.	Familiarize students with traditional manufacturing processes commonly employed in the robotics industry.
4.	Provide an overview of additive manufacturing techniques and their applications in robotics.
5.	Introduce students to CNC programming and machining for precise fabrication of robotic components.

Module – 1	No.of Hours
Methods of Fabrication: Introduction to Fabrication Methods, Definition of fabrication methods,	
Importance of fabrication in robotics and automation, Overview of different fabrication techniques.	
Welding and Joining Techniques, Types of welding processes (arc welding, spot welding) Principles	
and applications of welding in robotic, component fabrication, Joint design considerations, Machining	9
Processes, Introduction to machining operations (turning, milling, drilling, etc.).	
Machining tools and equipment: used in robotic component fabrication, Cutting parameters and tool	
selection, Sheet Metal Fabrication, Basics of sheet metal fabrication, Techniques for bending, cutting,	
and Forming sheet metal, Applications of sheet metal in robotic component manufacturing.	
Module – 2	No.of Hours
Materials for Robotic Components: Material Selection for Robotic Components, Introduction to	
materials used in robotics (metals, polymers and composites), Material properties and their significance	
in robotic component design, Factors influencing material selection for specific applications.	
Metal Alloys and Composites: Overview of commonly used metal alloys in robotics, Properties and	9
advantages of composite materials, Application areas and considerations for using composites in	
robotic components, Polymers and Elastomers, Properties and characteristics of polymers and	
elastomers, Use of polymers and elastomers in robotic component fabrication, Selection criteria and	
limitations of polymer-based materials.	
Module – 3	No.of Hours
Traditional Manufacturing: Casting and Molding, Principles and processes of casting and molding,	
Different types of casting techniques (sand casting, investment casting.) Molding techniques for	
robotic component production, Forming and Stamping, Introduction to forming and stamping	
processes, Presses and tools used in forming and stamping operations, Applications and advantages of	9
forming and stamping in robotics. Machining and CNC Operations: Advanced machining techniques	
for robotic component fabrication, Introduction to Computer Numerical Control (CNC) machines,	
Programming basics for CNC machining.	
Module – 4	No.of Hours
Additive Manufacturing: Introduction to Additive Manufacturing, Definition and principles of	
additive manufacturing, Various additive manufacturing technologies (3D printing, selective laser	
sintering, etc.), Benefits and limitations of additive manufacturing in robotics. Additive	
Manufacturing Techniques: Detailed study of different additive manufacturing processes, Materials	9
used in additive manufacturing for robotic components, Design considerations and optimization for	
additive manufacturing, Applications of Additive Manufacturing in Robotics, Case studies showcasing	
the useof additive manufacturing in robotics, Rapid prototyping and customization possibilities with	
additive manufacturing, Future trends and advancements in additive manufacturing for robotics.	
Module – 5	No.of Hours
CNC Programming and Machining: Introduction to CNC Programming, Fundamentals of	
Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM), Basics of CNC	
programming language (G-code, M- code), Programming techniques and syntax for CNC machining	
operations, CNC Machining Operations, Detailed study of CNC machining processes (turning, milling,	9
drilling, etc.).	
Machining strategies and tool selection for specific operations: Troubleshooting common issues in	
CNC machining, CNC Machining of Robotic Components, Programming and machining of simple	

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

robotic parts using CNC machines, Precision requirements and dimensional tolerances in robotic component fabrication, Inspection and quality control techniques for CNC machined parts.

Course	Outcomes: At the end of the course, the students will be able to					
CO1	Apply various fabrication methods and their applications in the robotics field.					
CO2	Adopt the material behavior and analyze its usages for different robotic components based on their properties.					
CO3	Apply traditional manufacturing processes to fabricate robotic components accurately.					
CO4	Adopt additive manufacturing techniques for rapid prototyping and production of robotic components.					
CO5	Demonstrate proficiency in CNC programming and machining operations to create precise robotic					
	components.					

Sl. No	List of Experiments
1.	Conduct hands-on demonstrations of different fabrication methods, such as welding Lap joint But Joint
2.	Conduct hands-on demonstrations of different fabrication methods, such as Welding L Joint Corner Joint.
3.	Conduct hands-on demonstrations of different fabrication methods, such as Lathe Turning Facing Operation.
4.	Conduct hands-on demonstrations of different fabrication methods, such as Lathe Knurling And Thread
	Cutting Operation
5.	Conduct hands-on demonstrations of different fabrication methods, such as Drilling,
6.	hands-on experience in CNC programming and machining by allowing them to design and manufacture
	simple robotic components using CNC machine
7.	Conduct hands-on demonstrations of different fabrication methods, such as Milling Squar Rectangle
8.	Conduct hands-on demonstrations of different fabrication methods, such as face and end milling
9	Conduct hands-on demonstrations of different fabrication methods, such as Lathe Knurling and taper turning
	Operation using CNC machine.
10	Conduct hands-on demonstrations of different fabrication methods, such as Lathe Thread cutting Operation
	using CNC machine.

Text Bo	oks
1.	Serope Kalpakjian Illinois Institute of Technology Steven R. Schmid The University of Notre Dame SI
	Conversion by Hamldon Musa Universiti Teknologi Malaysia Prentice Hall Singapore London."
	Manufacturing Engineering and Technology (2007).
2.	William D. Callister Jr. and David G. "Materials Science and Engineering: An Introduction" by Rethwisch.
	10 th edition, John Wiley & Sons, 2020.

Referen	ce Text Books
1.	John J. Craig, Introduction to Robotics: Mechanics and Control
2.	Renfrew, Alasdair. "Introduction to robotics: Mechanics and control." International Journal of Electrical
	Engineering & Education 41.4 (2004): 388.
3.	Groover, Mikell P., Mitchell Weiss, and Roger N. Nagel.Industrial Robotics: Technology, Programming, and
	Applications Industrial robotics: technology, programming and application. McGraw-Hill Higher Education,
	1986.

Web links and Video lectures (e-Resources)

- 1. Robotics Online (https://www.robotics.org/) Description: This website provides comprehensive resources related to robotics, including articles, industry news, and information on fabrication methods.
- Video Lecture Series: MIT Open Course Ware Introduction to Robotics (https://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/) Description: This video lecture series covers various topics in robotics, including fabrication methods, materials, and manufacturing processes.

Constitute in Party

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for 50 marks and scaled down to 20 marks.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

		Theory		
IA Test	Exam conducted for	Scaled down to	Average of best two tests	Total
IA-1	50	30		
IA-2	50	30	30	
IA-3	50	30		50/2=25
Two Assignments	2×10=20	10	10	
Two Quizzes	2×10=20	10	10	

	\mathbf{L}^{A}	AB	
Continuous performance and record writing	Each experiments evaluated for 10 marks	Scaled down to 05 marks	5+20=25
Internal Test + Viva voce	Exam conducted for 50 marks	Scaled down to 20 marks	

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.
- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	1	1	1	1	2	1			1	
	3	1	1	1	1	2	1	_	-	1	_
CO2	2	2	1	1	1	1	1	-	-	2	-
CO3	1	1	1	1	1	1	1	-	-	2	-
CO4	1	1	1	1	1	1	1	-	-	1	-
CO5	1	1	1	1	1	1	1	-	-	1	-

Level 3 - High, Level 2 - Moderate, Level 1 - Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Robotics and Automation

SEMESTER-III							
MODELING AND DESIGN LAB							
		Category: PCCL					
Course Code	:	B24RA305L	CIE	:	50 Marks		
Teaching Hours L: T: P	:	0:0:2	SEE	:	50 Marks		
Total Hours	:	15(P)	Total	:	100 Marks		
Credits	:	1	SEE Duration	:	3 Hrs		

	Course Objectives
1.	To acquire the knowledge of limits, tolerance and fits and indicate them on machine drawings.
2.	To make drawings using orthographic projections and sectional views.
3.	To impart knowledge of thread forms, fasteners, keys, joints, couplings.
4.	To understand and interpret drawings of machine components leading to preparation of assembly drawings using
	CAD packages.

Module – 1: Geometrical Dimensioning and Tolerances (GD&T) (only for CIE)	No.of Hours
Introduction, Fundamental tolerances, Deviations, Methods of placing limit dimensions, machining	
symbols, types of fits with symbols and applications, geometrical tolerances on drawings. Standards	2
followed in industry.	
Module – 2: Thread Forms and Fasteners	No.of Hours
Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External),	
BSW (Internal & External) square and Acme. Sellers thread, American Standard thread, Helicoil	
thread inserts.	4
Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with	7
washer (assembly), simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut,	
taper and split pin for locking, countersunk head screw, grub screw, Allen screw.	
Module – 3: Assembly of Joints, couplings (using 3D environment)	No.of Hours
(Part drawings shall be given)	
Joints: Like Cotter joint (socket and spigot), knuckle joint (pin joint).	6
Couplings: Like flanged coupling (protected and unprotected type), universal coupling.	
Module – 4: Assembly of Machine Components (using 3D environment)	No.of Hours
(Part drawings shall be given)	
Lifting devices (screw jack)	
Bearings (Plummer block)	24
Machine tool components (machine vice)	24
I.C. Engine components (piston)	
I.C. Engine components (connecting rod)	

Course Outcomes: At the end of the course, the students will be able to					
CO1	Interpret the Machining and surface finish symbols on the component drawings.				
CO2	Apply limits and tolerances to assemblies and choose appropriate fits for given assemblies				
CO3	Illustrate various machine components through drawings				
CO4	Create assembly drawings as per the conventions.				

Text 1	Books
1.	K L Narayana, P Kannaiah, K Venkata Reddy, "Machine Drawing", New Age International, 3 rd Edition.
	ISBN 13: 978-81-224-2518-5, 2006
2.	N D Bhatt, "Machine Drawing", Charotar Publishing House Pvt. Ltd., 50 th Edition, ISBN-13: 978-9385039232,
	2014

Refer	rence Text Books
1.	Sadhu Singh, P. L. Sah, "Fundamentals of Machine Drawing", PHI Learning Pvt. Ltd, 2 nd Edition, ISBN:
	9788120346796, 2012
2.	Ajeet Singh, "MACHINE DRAWING", Tata McGraw-Hill Education, , ISBN: 9781259084607, 2012

Constitution of Parties

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE marks for the practical course is 50 Marks.

- CIE shall be evaluated for max marks 100. Marks obtained shall be accounted for CIE final marks, reducing it by 50%.
- CIE component should comprise of Continuous evaluation of Drawing work of students as and when the Modules
 are covered.

At least one closed book Test covering all the modules on the basis of below detailed weightage. Weightage for Test and Continuous evaluation shall be suitably decided by respective course coordinators.

Module	Max. Marks Weightage	Evaluation Weightage in marks		
		Submission of printouts		
Module 1	10	10		
Module 2	10	10		
Module 3	30	30		
Module 4	50	50		
Total	100	100		

SEMESTER END EXAMINATION (SEE)

Semester End Evaluation (SEE): SEE marks for the practical course is 50 Marks.

- The duration of SEE is 03 hours. Questions shall be set worth of 3 hours
- SEE shall be conducted jointly by the two examiners.
- SEE shall be conducted and evaluated for maximum marks 100. Marks obtained shall be accounted for SEE final
 marks, reducing it to 50 marks.
- Question paper shall be set jointly by both examiners and made available for each batch as per schedule.
- Questions are to be set preferably from Text Books.
- Evaluation shall be carried jointly by both the examiners.
- One full question shall be set from Modules 2,3 and 4 as per the below tabled weightage details.

Module	Max. Marks Weightage	Evaluation Weightage in marks		
		Computer display & printout		
Module 2	20	20		
Module 3	30	30		
Module 4	50	50		
Total	100	100		

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO CO	3	1	1	1	1	_	-	1	-	1	-
CO2	2	2	1	1	1	-	-	1	-	2	-
CO3	1	1	1	1	1	-	-	1	-	2	-
CO4	1	1	1	1	1	-	-	1	-	1	-

Level 3 - High, Level 2 - Moderate, Level 1 - Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-III					
	BASIC COMMUNICATION SYSTEMS Category: ESC/ETC/PLC-III				
Course Code	:	B24RA361	CIE	:	50 Marks
Teaching Hours L : T : P	:	3:0:0	SEE	:	50 Marks
Total Hours	:	45(T)	Total	:	100 Marks
Credits	:	3	SEE Duration	:	3 Hrs

	Course Objectives
1.	To prepare students with fundamental knowledge in the field of Communication systems.
2.	Use of different modulation and demodulation techniques used in the communication.
3.	Analyze transmitter and receiver circuits.
4.	To apply and analyze the source and error control coding techniques.
5.	To understand the concept of Global system for mobile communications (GSM) techniques and architecture.

Module – 1: Analog Communication	No. of Hours
Introduction to Communication Systems – Modulation – Types – Need for Modulation. Theory of	
Amplitude Modulation – Evolution and Description of SSB Techniques – Theory of Frequency and	9
Phase Modulation – Comparison of Analog Communication Systems.	
Module – 2 : Data and Pulse Communication	No. of Hours
Pulse Communication: Pulse Amplitude Modulation (PAM) – Pulse Time Modulation (PTM) – Pulse	
Code Modulation (PCM) - Comparison Of Various Pulse Communication System .Data	
Communication: History Of Data Communication - Standards, Organizations For Data	9
Communication- Data Communication Circuits - Data Communication Codes - Data Communication	
Hardware – Serial And Parallel Interfaces.	
Module – 3: Digital Modulation	No. of Hours
Amplitude Shift Keying (ASK) – Frequency Shift Keying (FSK)–Phase Shift Keying(PSK) – BPSK –	
QPSK – Quadrature Amplitude Modulation (QAM) – 8 QAM – 16 QAM– Bandwidth Efficiency–	9
Comparison of various Digital Communication System.	
Module – 4: Source And Error Control Coding	No. of Hours
Entropy, Source Encoding Theorem, Shannon Fano Coding, Huffman Coding, Mutual Information,	0
Channel Capacity, Error Control Coding, Linear Block Codes, Cyclic Codes – ARQ Techniques	9
Module – 5: Multi-User Radio Communication	No. of Hours
Global system for mobile communications (GSM) - Code Division Multiple Access (CDMA) -	
Cellularconcept and Frequency Reuse – Channel Assignment and Handover Techniques – Overview	9
of Multiple Access Schemes – Satellite Communication – Bluetooth.	

Course	Outcomes: At the end of the course, the students will be able to
CO1	Analyze digital and Analog communication circuits
CO2	Compare the various AM and FM modulation techniques and analyze the related degree of modulation factors
	bandwidth, etc., given the voltage/frequency amplitudes of the carrier signalsand the intelligence signals.
CO3	Apply pulse code modulation and various digital modulation techniques to given signal.
CO4	Apply and analyze the source and error control coding techniques.
CO5	Understand the concept of Global system for mobile communications (GSM) techniques and architecture.

Text Bo	oks
1.	Wayne Tomasi, "Advanced Electronic Communication Systems", 6 th Edition, Pearson Education, 2009.
2.	B.P.Lathi, "Modern Analog and Digital Communication Systems", 3 rd Edition, Oxford University Press, 2007.

Referen	ce Text Books
1.	Simon Haykin, "Communication Systems", 4 th Edition, John Wiley & Sons, 2004
2.	H.Taub, D L Schilling and G Saha, "Principles of Communication", 3 rd Edition, PearsonEducation, 2007.

Web links and Video lectures (e-Resources)
1. https://www.digimat.in/nptel/courses/video/117105143/L01.html
2. https://www.digimat.in/nptel/courses/video/117105144/L01.htm

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A** is **Compulsory** and it carries 20 Marks.
- 4. Part-B contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	3	-	1	-	-	-	-	1	2
CO2	2	2	2	-	2	-	-	-	-	2	2
CO3	1	1	1	-	2	-	-	-	-	2	1
CO4	1	1	1	-	1	-	-	-	-	1	1
CO5	2	1	1	-	1	-	-	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-III							
ROBOT MECHANICS AND CONTROL							
Category: ESC/ETC/PLC-III							
CourseCode	:	B24RA362	CIE	:	50Marks		
Teaching Hours L:T:P	:	3:0:0	SEE	:	50Marks		
TotalHours	:	45(T)	Total	:	100 Marks		
Credits	:	3	SEE Duration	:	3Hrs		

	Course Objectives						
1.	Understand and discuss the fundamental elementary concepts of Robotics.						
2.	Provide insight into different types of robots.						
3.	Explain intelligent module for robotic motion control.						
4.	Educate on various path planning techniques.						
5.	Illustrate the working of innovative robotic devices						

Module-1: Introduction To Robotics	No. of Hours					
Introduction to Robotics and Automation, laws of robot, brief history of robotics, basic components of robot, robot specifications, classification of robots, human system and robotics, safety measures in robotics, social impact, Robotics Market and the future prospects, advantages and disadvantages of robots.	9					
Module-2: Robot Anatomy and Motion Analysis	No. of Hours					
Anatomy of a Robot, Robot configurations: polar, cylindrical, Cartesian, and jointed arm configurations, Robot links and joints, Degrees of freedom: types of movements, vertical, radial and rotational traverse, roll, pitch and yaw, Wok volume/envelope, Robot kinematics: Introduction to direct and inverse kinematics.	9					
Module-3: Robot Drives and End Effectors						
Robot drive systems: Hydraulic, Pneumatic and Electric drive systems, classification of end effectors, mechanical grippers, vacuum grippers, magnetic grippers, adhesive gripper, 1DoF, 2DoF, multiple degrees of freedom robot hand, tools as end effectors, Robot control types: limited sequence control, point-to-point control, playback with continuous path control.	9					
Module-4: Path Planning	No. of Hours					
Definition Joint space technique, Use of P degree polynomial Cubic, polynomial Cartesian space technique, parametric descriptions, straight line and circular paths, position and orientation planning.	9					
Module-5: Robotics Applications: Material Handling						
Pick and place, palletizing and depalletizing, machining loading and unloading, welding & assembly, Medical, agricultural and space applications, unmanned vehicles: ground, Ariel and underwater applications, Types of robots: Manipulator, Legged robot, wheeled robot, aerial robots, Industrial robots, Humanoids, Autonomous robots, and Swarm robots.	9					

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Understand the significance, social impact and future prospects of robotics and automation in various engineering applications.						
CO2	Identify and describe the components and anatomy of robotic system.						
CO3	Know about various path planning techniques and analyze different motions of robotics system						
CO4	Use the suitable drives and end- effectors for a given robotics application.						
CO5	Apply robotics concept to automate the monotonous and hazardous tasks and categorize various types of robots based on the design and applications in real world scenarios.						

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Text Boo	oks
1.	S.R. Deb, Robotics Technology and flexible automation, Tata McGraw-Hill Education, 2009.
	Mikell P.Grooveret.al., "Industrial Robots Technology, Programming and Applications", McGraw Hill, Special Edition, (2012).
3.	Ganesh S Hegde, "AtextbookonIndustrialRobotics", University science press, 3 rd edition, 2017.

	Reference Text Books										
		Richard D Klafter, Thomas A Chmielewski, Michael Negin, "Robotics Engineering-An Integrated Approach", Eastern Economy Edition, PrenticeHallofIndiaPvt.Ltd.,2006.									
•		Fu K S,Gonzalez R C, Lee C.S.G, "Robotics: Control, Sensing, Vision and Intelligence", McGraw Hill, 1987.https://www.robots.com/applications.									

Web links and Video lectures(e-Resources)

- 1. https://roboticscasual.com/ros-tutorial-pick-and-place-task-with-the-moveit-c-interface/
- 2. https://roboticscasual.com/ros-tutorial-simulate-ur5-robot-in-gazebo-urdf-explained/
- 3. https://roboticscasual.com/the-best-degrees-to-work-in-robotics/
- 4. https://roboticscasual.com/robotics-tutorials/
- 5. https://www.ieee-ras.org/educational-resources-outreach/educational-material-in-robotics-andautomation.
- 6. https://www.isa.org/

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	1	-	-	1	2	-	ı	3	2

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CO2	3	1	-	-	-	3	1	-	-	2	2
CO3	3	2	-	-	-	1	2	-	-	2	1
CO4	1	1	-	-	-	1	2	-	-	2	1
CO5	1	1	-	-	-	1	2	-	-	1	1

Level3-High, Level2-Moderate, Level1-Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-III								
MATERIAL SCIENCE								
	Category: ESC/ETC/PLC-III							
Course Code	:	B24RA363	CIE	:	50Marks			
Teaching Hours L:T:P	:	3:0:0	SEE	:	50Marks			
Total Hours	:	45(T)	Total	:	100Marks			
Credits	:	3	SEE Duration	:	3Hrs			

	Course Objectives							
1.	Provide a comprehensive understanding of the structure, properties, and behavior of materials.							
2.	Enable students to link material properties to their applications in robotics and automation.							
3.	Introduce advanced materials and their role in robotics, automation systems, and smart manufacturing.							
4.	Cultivate skills for selecting materials based on design and application requirements.							

Module-1: Introduction to Materials Science	No. of Hours
Overview of materials and their applications in robotics and automation. Classification of materials: Metals, ceramics, polymers, composites, and smart materials. Atomic structure and bonding: Impact on material properties. Crystallography: Crystal structures, imperfections, and defects. Thermal, electrical, magnetic, and optical properties of materials.	9
Module-2: Mechanical Properties of Materials	No. of Hours
Stress-strain behavior, elasticity, plasticity, toughness, and hardness. Fatigue, creep, and fracture mechanics. Testing methods: Tensile, compression, impact, and hardness testing. Relevance of mechanical properties in robotic joints, arms, frames and end-effectors	9
Module-3: Materials Processing and Manufacturing	No. of Hours
Fundamentals of material processing techniques: Casting, forging, welding, and additive manufacturing. Heat treatment processes and their effects on material properties. Surface engineering techniques for wear and corrosion resistance in automation components.	9
Module-4: Advanced Materials for Robotics	No. of Hours
Composite materials: Types, fabrication, and applications in lightweight robotic arms. Smart materials: Shape-memory alloys, piezoelectric materials, magneto rheological fluids, and applications in actuators and sensors. Nanomaterials: Carbon nano tubes, graphene, and their use in robotics and automation. Biomaterials: Role in soft robotics and prosthetics.	9
Module-5: Material Selection and Processing	No. of Hours
Material selection criteria: Cost, performance, and environmental considerations. Processing techniques: Additive manufacturing, machining, casting, and welding. Surface engineering: Coatings and treatments for wear and corrosion resistance. Case studies: Material choices for robotic gears, actuators, and frames.	9

Course C	Course Outcomes: At the end of the course, the students will be able to				
CO1	Classify and analyze materials based on their properties and structure.				
CO2	Select suitable materials for robotic and automation components.				
CO3	Apply concepts of material properties in designing efficient systems.				
CO4	Design and utilize emerging materials for robotics applications.				

Text Boo	ks
1.	Callister, W. D., & Rethwisch, D. G., Materials Science and Engineering: An Introduction.
2.	Ashby, M. F., Materials Selection in Mechanical Design.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Reference	Reference Text Books					
1.	Askeland, D. R., & Wright, W. J., Essentials of Materials Science and Engineering.					
2.	Shackleford, J. F., Introduction to Materials Science for Engineers.					
3.	Groover, M. P., Fundamentals of Modern Manufacturing: Materials, Processes, and Systems					
4.	Recent journal articles and conference papers in robotics and materials science.					

Web links and Video lectures(e-Resources)

Bhattacharya,B., Materials Selection and Design, NPTEL Course Material, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, http://nptel.ac.in/courses/112104122/.

Prasad, R., Introduction to Materials Science and Engineering, NPTEL Course Material, Department of Material

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	2	-	-	-	-	-	-	-	-	2
CO2	3	2	-	2	-	-	-	-	-	-	1
CO3	3	2	2	1	-	-	-	-	-	-	1
CO4	3	2	2	-	-	-	-	-	-	-	1

Level3-Highly, Level2-Moderately, Level1-Low

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-III						
OOPs WITH C++						
Category: ESC/ETC/PLC-III						
(Common to ECE, RA)						
Course Code	:	B24EC364	CIE	:	50 Marks	
Teaching Hours/Week (L:T:P) : 3:0:0 SEE : 50 Marks						
Total Hours : 45(T) Total : 100 Marks						
Credits	:	3	SEE Duration	:	3 Hrs	

	Course Objectives					
1.	To understand object-oriented programming using C++and Gain knowledge about the capability to store					
	information together in an object					
2.	To illustrate the capability of a class to rely upon another class and functions					
3.	To Create and process data in files using file I/O functions					
4.	To understand the process of templates and virtual attributes.					
5.	To understand the generic programming features of C++ including Exception handling					

What is object-Oriented Programming? Introducing C++ Classes, The General Form of a C++ Program. Classes and Objects: Classes, Friend Functions, Friend Classes, Inline Functions,	
	9
Parameterized Constructors, Static Class Members, When Constructors and Destructors are Executed,	
The Scope Resolution Operator, Passing Objects to functions, Returning Objects, Object Assignment	
Ch 11, Ch 12	
Module – 2: Arrays, Pointers, References, and the Dynamic Allocation Operators No.	No. of Hours
Arrays of Objects, Pointers to Objects, The this Pointer, Pointers to derived types, Pointers to class	
members. Functions Overloading, Copy Constructors: Functions Overloading, Overloading	
Constructor Functions. Copy Constructors, Default Function Arguments, Function Overloading and	9
Ambiguity. Ch 13, Ch 14	
Module – 3: Operator Overloading	No. of Hours
Creating a Member Operator Function, Operator Overloading Using a Friend Function, Overloading	
new and delete Inheritance: Base-Class Access Control, Inheritance and Protected Members, Inheriting	
Multiple Base Classes, Constructors, Destructors and Inheritance, Granting Access, Virtual Base	9
Classes Ch 15, Ch 16	
Module– 4: Virtual Functions and Polymorphism No	No. of Hours
Virtual Functions, The Virtual Attribute is Inherited, Virtual Functions are Hierarchical, Pure Virtual	
Functions, Using Virtual Functions, Early v/s Late Binding. Templates: Generic Functions, Applying	9
Generic Functions, Generic Classes. The type name and export Keywords. The Power of Templates Ch	
17, Ch 18	
Module-5: Exception Handling No.	No. of Hours
Exception Handling Fundamentals, Handling Derived-Class Exceptions, Exception Handling Options,	
Applying Exception Handling. The C++ I/O System Basics: C++ Streams, The C++ Classes, Formatted	
I/O File I/O: and File Classes, Opening and Closing a File, Reading and Writing Text Files, Detecting	9
EOF. Ch 19, Ch 20, Ch21	

Course	Course outcome: At the end of the course, the student will be able to				
CO1	Understand the basic concepts of object-oriented programming.				
CO2	Design appropriate classes for the given real world scenario.				
CO3	Apply the knowledge of compile-time / run-time polymorphism to solve the given problem				
CO4	Use the knowledge of inheritance for developing optimized solutions				

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CO5	Apply the concepts of templates and exception handling for the given problem 6 Use the concepts of input
	output streams for file operations

Text Bo	oks
1.	1. Herbert schildt, The Complete Reference C++, 4 th edition, TMH, 2005

Referen	ice Books
1.	1. Balagurusamy E, Object Oriented Programming with C++, Tata McGraw Hill Education Pvt.Ltd., Sixth
	Edition 2016.
2.	. Bhave , "Object Oriented Programming With C++", Pearson Education , 2004.

Web links and Video lectures (e-Resources)	
1. Basics of C++ - https://www.youtube.com/watch?v=BClS40yzssA	
2. Functions of C++ -https://www.voutube.com/watch?v=p8ehAjZWjPw	

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
COI	2	-	1	2	2	1	1	-	1	2	1
CO2	1	-	1	2	2	-	-	-	1	1	1
CO3	2	-	1	2	3	-	-	-	1	1	1
CO4	2	-	1	1	1	1	1	-	1	2	1
CO5	1	-	1	2	2	1	1	-	2	1	1

Level3 -High, Level2- Moderate, Level1- Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Robotics and Automation

SEMESTER-III							
C++ PROGRAMMING LAB							
		Category: Al	EC/SEC-III				
	(Common to ECE, RA)						
Course Code	:	B24EC381	CIE	:	50 Marks		
Teaching Hours L: T: P	:	0:0:2	SEE	:	50 Marks		
Total Hours	:	15(P)	Total	:	100 Marks		
Credits	:	1	SEE Duration	1:	3 Hrs		

	Course Objectives
1.	Understand object-oriented programming concepts, and apply them in solving problems
2.	To create, debug and run simple C++ programs
3.	Introduce the concepts of functions, friend functions, inheritance, polymorphism and function overloading
4.	Introduce the concepts of exception handling and multithreading
5.	Understand the concept of Inheritance

Sl. No	List of Experiments
1.	Write a C++ program to find largest, smallest & second largest of three numbers using inline functions Max &
	Min.
2.	Write a C++ program to calculate the volume of different geometric shapes like cube, cylinder and sphere
	using function overloading concept.
3.	Define a STUDENT class with USN, Name & Marks in 3 tests of a subject. Declare an array of 10
	STUDENT objects. Using appropriate functions, find the average of the two better marks for each student.
	Print the USN, Name & the average marks of all the students.
4.	Write a C++ program to create class called MATRIX using two-dimensional array of integers, by overloading
	the operator == which checks the compatibility of two matrices to be added and subtracted. Perform the
	addition and subtraction by overloading + and – operators respectively. Display the results by overloading the
	operator r $<<$. If (m1 == m2)then m3 = m1 +m2 and m4= m1 – m2 else display error
5.	Demonstrate simple inheritance concept by creating a base class FATHER with data members: First Name,
	Surname, DOB & bank Balance and creating a derived class SON, which inherits: Surname & Bank Balance
	feature from base class but provides its own feature: First Name & DOB. Create & initialize F1 & S1 objects
	with appropriate constructors & display the FATHER & SON details.
6.	Write a C++ program to define class name FATHER & SON that holds the income respectively. Calculate &
	display total income of a family using Friend function.
7.	Write a C++ program to accept the student detail such as name & 3 different marks by get_data() method &
	display the name & average of marks using display() method. Define a friend function for calculating the
	average marks using the method mark_avg().
8.	Write a C++ program to explain virtual function (Polymorphism) by creating a base class polygon which has
	virtual function areas two classes rectangle & triangle derived from polygon & they have area to calculate &
	return the area of rectangle & triangle respectively
9.	Design, develop and execute a program in C++ based on the following requirements: An EMPLOYEE class
	containing data members &members functions: i) Data members: employee number (an integer), Employee_
	Name (a string of characters), Basic_ Salary (in integer), All_ Allowances (an integer), Net_Salary (an
	integer). (ii) Member functions: To read the data of an employee, to calculate Net_Salary& to print the values

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

	of all the data members. (All_Allowances = 123% of Basic, Income Tax (IT) =30% of gross salary (=basic_
	Salary_All_Allowances_IT).
10.	Write a C++ program with different class related through multiple inheritance & demonstrate the use of
	different access specified by means of members variables & members functions.
11.	Write a C++ program to create three objects for a class named count object with data members such as roll no.
	& Name. Create members function members data () for setting the data values & display () member
	functions to display which object has invoked it using,,this" pointer.
12.	Write a C++ program to implement exception handling with minimum 3 exceptions classes including two
	built in exceptions.

Course	Outcomes: At the end of the course, the students will be able to
CO1	Able to understand and design the solution to a problem using object-oriented programming concepts.
CO2	Able to reuse the code with extensible Class types, User-defined operators and function
	overloading
CO3	Achieve code reusability and extensibility by means of Inheritance and Polymorphism
CO4	Implement the features of C++ including templates, exceptions and file handling for providing
	programmed solutions to complex problems

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-III						
VIRTUAL REALITY AND APP DEVELOPMENT Category: AEC/SEC-III						
Course Code	:	B24RA382	CIE	:	50 Marks	
Teaching Hours L: T: P	:	1:0:0	SEE	:	50 Marks	
Total Hours	:	15(T)	Total	:	100 Marks	
Credits	:	1	SEE Duration	:	1Hrs	

	Course Objectives
1.	Describe how VR systems work and list the applications of VR
2.	Understand the design and implementation of the hardware that enables VR systems to be built
3.	Understand the system of human vision and its implication on perception and rendering.
4.	Explain the concepts of motion and tracking in VR systems.
5.	Describe the importance of interaction and audio in VR systems

Module – 1: Introduction to Virtual Reality	No. of Hours
Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of	
Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output-	5
Visual, Aural & Haptic Displays, Applications of Virtual Reality.	
Module – 2: Representing the Virtual World	No. of Hours
Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and	
Haptic Representation in VR	5
Module – 3: The Geometry of Virtual Worlds & The Physiology of Human Vision	No. of Hours
Geometric Models, Changing Position and Orientation, Axis-Angle Representations of Rotation,	
Viewing Transformations, Chaining the Transformations, Human Eye, eye movements &	5
implications for VR.	
Module – 4: Visual Perception & Rendering	No. of Hours
Visual Perception - Perception of Depth, Perception of Motion, Perception of Colour, Combining	
Sources of Information. Visual Rendering -Ray Tracing and Shading Models, Rasterization,	5
Correcting Optical Distortions, Improving Latency and Frame Rates	
Module – 5: Motion & Tracking	No. of Hours
Motion in Real and Virtual Worlds- Velocities and Accelerations, The Vestibular System, Physics in	
the Virtual World, Mismatched Motion and Vection Tracking- Tracking 2D & 3D Orientation,	5
Tracking Position and Orientation, Tracking Attached Bodies	

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	Describe how VR systems work and list the applications of VR.					
CO2	Analyse & design and implementation of the hardware that enables VR systems to be built					
CO3	To describe the system of human vision and its implication on perception and rendering					
CO4	Explain the concepts of motion and tracking in VR systems.					
CO5	Describe the importance of interaction and audio in VR systems					

Text Books					
1.	Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016				
2.	Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan BCraig, (The				
	Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, SanFrancisco, CA, 2002				

Referen	ce Text Books
1.	Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.
2.	Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory
	andPractice", Addison Wesley, USA, 2005
3.	Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds",2005.

Web links and Video lectures (e-Resources)

- 1.http://lavalle.pl/vr/book.html
 2. https://nptel.ac.in/courses/106/106/106106138/
- 3. https://www.coursera.org/learn/introduction-virtual-reality

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks (Multiple Choice Questions), after the completion of the syllabus 40%, 70% and 80% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	1	1	-	1	2	-	-	1	-	2	2
CO2	1	1	-	1	2	-	-	1	-	3	2
CO3	1	1	-	1	2	-	-	1	-	2	2
CO4	1	1	-	1	2	-	-	1	-	3	2
CO5	1	1	-	1	2	-	-	1	-	2	2

Level-3 -High, Level-2- Moderate, Level-1 - Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-III							
		MATERIALS TE Category: AEC					
Course Code	:	B24RA383	CIE	:	50 Marks		
Teaching Hours /Week (L:T:P)	:	0:0:2	SEE	:	50 Marks		
Total Hours	:	15(P)	Total	:	100 Marks		
Credits	:	1	SEE Duration	:	3 Hrs		

ĺ		Course Objectives
Ī	1.	To learn the concept of the preparation of samples to perform characterization such as microstructure, volume
		fraction of phases and grain size.
	2.	To understand mechanical behavior of various engineering materials by conducting standard tests
Ī	3.	To learn material failure modes and the different loads causing failure

Sl. No	Experiment Name
	Preparation of specimen for Metallographic examination of different engineering materials. To report
1.	microstructures of plain carbon steel, tool steel, grey C.I, SG iron, Brass, Bronze & composites.
2.	Tensile, test of steel, aluminium and cast-iron specimens using Universal Testing Machine.
3.	Shear test of steel, aluminium and cast-iron specimens using Universal Testing Machine.
	Compression test of steel, aluminium and cast-iron specimens using Universal Testing Machine.
4.	
5.	Flexural test of wooden specimen/aluminum /steel specimens using Universal Testing Machine.
6.	Torsion Test on steel bar using torsion testing machine.
7.	Izod and Charpy Tests on Mild steel and C.I Specimen.
	To determine the hardness values of MildSteel / Aluminium by Rockwell hardness Testing machine.
8.	
9.	To determine the hardness values of Copper/Brass by Brinell's Hardness testing machine
10.	To determine the hardness values of HSS material by Vickers Hardness testing machine.

Course	e Outcomes: At the end of the course, the students will be able to
CO1	Acquire experimentation skills in the field of material testing
CO2	Develop theoretical understanding of the mechanical properties of materials by performing experiments with UTM machine.
CO3	Apply the knowledge of testing methods in related areas.

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	2	1	-	-	-	-	1	-	-	1
CO2	3	2	1	-	-	-	-	1	-	-	1
CO3	3	2	1	-	-	-	-	1	-	-	1

Level 1-High, Level 2-Moderate, Level-low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-III								
	APPLICATIONS OF MATLAB							
		Category: AEC/SE	C-III					
Course Code	:	B24RA384	CIE	:	50 Marks			
Teaching Hours L: T: P	:	0:0:2	SEE	:	50 Marks			
Total Hours	:	15(P)	Total	:	100 Marks			
Credits	:	1	SEE Duration	:	3 Hrs			

	Course Objectives
1.	To provide the requisite and relevant background necessary to understand the other important engineering
	mathematics courses offered for Engineers and Scientists
2.	To introduce important topics of applied mathematics, namely Single and Multivariable Calculus and Vector
	Calculus etc.
3.	To impart the knowledge of Laplace transform, an important transform technique for Engineers
	this requires knowledge of integration

Sl. No	List of Experiments
1.	Introduction to MATLAB through matrices, and general Syntax
2.	Plotting and visualizing curves and surfaces in MATLAB – Symbolic computations using MATLAB
3.	Evaluating Extremum of a single variable function
4.	Understanding integration as Area under the curve
5.	Evaluation of Volume by Integrals (Solids of Revolution)
6.	Evaluating maxima and minima of functions of several variables
7.	Applying Lagrange multiplier optimization method
8.	Evaluating Volume under surfaces.
9.	Evaluating triple integrals.
10.	Evaluating gradient, curl and divergence.
11.	Evaluating line integrals in vectors.
12.	Applying Green's theorem to real world problems

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Having an ability to apply mathematics and science in engineering applications.						
CO2	Having a clear understanding of the subject related concepts and of contemporary issues.						
CO3	Having problem solving ability- solving social issues and engineering problems.						

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

IV - Semester Syllabus

SEMESTER-IV									
THEORY OF APPLIED ROBOTICS									
	Category: PCC								
CourseCode	:	B24RA401	CIE	:	50 Marks				
TeachingHours/Week (L:T:P)	:	3:0:0	SEE	:	50 Marks				
TotalHours	:	45(T)	Total	:	100 Marks				
Credits	:	3	SEE Duration	:	3 Hrs				

	Course Objectives							
1.	To identify and enumerate different link-based mechanisms with basic understanding of motion							
2.	To interpret and analyze various velocity and acceleration diagrams for various mechanisms							
3.	To understand and illustrate various power transmission mechanisms using suitable method							
4.	To design and evaluate the performance of different cams and followers							
5.	To compute the natural and damped frequencies offer e1-DOFmechanical systems							

Module-1	No. of Hours
Links and Mechanisms: Introduction: Definitions: Link, kinematic pairs, kinematic chain, mechanism, structure, degrees of freedom, Classification links, Classification of pairs based on type of relative motion, mobility of mechanism. Mechanisms: Quick return motion mechanisms. Whitworth mechanism and Crank and slotted lever Mechanism. Straight line motion mechanisms and Peaucellier's mechanism. Intermittent Motion mechanisms: Geneva wheel mechanism, Ratchet and Pawl mechanism, toggle mechanism, Ackerman steering gear mechanism	9
Module-2	No. of Hours
Belt Drives: Definitions: Flat belt drives, ratio of belt tensions, centrifugal tension, and power transmitted, (Simple Numerical Problems). Gear Drives: Gear Trains: Simple gear trains, compound gear trains. : Gear terminology, law of	9
gearing, path of contact, arc of contact, contact ratio of spur gear.	
Module-3	No. of Hours
Balancing of Rotating Masses: Static and dynamic balancing, balancing of single rotating mass by balancing masses in same plane and in different planes. Balancing of several rotating masses by balancing masses in same plane and in different planes. Simple numerical problem both numerical and graphical Industrial Robots – Kinematics: Introduction to Industrial Robots and their Applications, Robot Coordinates and Transformations, Forward Kinematics, Inverse Kinematics, Differential kinematics, Trajectory Planning	9
Module-4	No. of Hours
Cams: Types of cams, types of followers. Displacement, velocity and acceleration curves for uniform velocity, Simple Harmonic Motion, Uniform Acceleration and Retardation Campro files: disccam with reciprocating/oscillating follower having knife-edge, roller and follower inline and offset (Without derivations).	9
Module-5	No. of Hours
Governors: Types of governors; force analysis of Porter and Hartnell governors. Controlling force, stability, sensitiveness, isochronisms, effort and power (no Numerical problem). Gyroscope: Gyroscopic couple. Effect of gyroscopic couple on plane disc, Aeroplane, Ship, stability of two wheelers and four wheelers (Without numerical problems)	9

TOTAL DE LEGIS

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	To identify and enumerate different link-based mechanisms with basic understanding of motion.						
CO2	To understand and illustrate various power transmission mechanisms						
CO3	To understand and illustrate various Governing mechanisms using suitable methods						
CO4	To design and evaluate the performance of different cams and followers						
CO5	Analyze the different types of governors and gyroscope effects.						

Text Bo	oks
1.	Theory of Machines Rattan S.S, TataMcGraw-Hill Publishing Company Ltd., NewDelhi, Edition,2009
2.	TheoryofMachinesSadhuSingh,PearsonEducation(Singapore)Pvt. Ltd, Indian Branch New Delhi,2 nd Edition 2006
3.	Mechanism and Machine Theory G. Ambekar PHI 2009
4.	Saha S K, Introduction to Robotics, McGraw Hill publishing, 2014

Referenc	Reference Books							
1.	Theoryof Machines. ThomasBevan. CBS Publication 1984							
2.	DesignofMachineryRobert L.Norton,McGraw Hill 2001							
3.	Mechanisms and Machines-Kinematics, Dynamics and Synthesis Michael M Stanisicengage Learning2016							

Web links and Video lectures(e-Resources)	
1. https://nptel.ac.in/courses/112106270	

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A** is **Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	2	2	-	1	1	-	1	-	-	1
CO2	3	2	2	-	1	1	-	1	-	-	1
CO3	3	2	2	-	1	1	-	1	-	-	1
CO4	3	2	2	-	1	1	-	1	-	-	1
CO5	3	2	2	-	1	1	-	1	-	-	1

Level 1-High, Level 2-Moderately, Level 3-Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-IV								
SENSORS & TRANSDUCERS								
		Category: PCC						
Course Code	:	B24RA402	CIE	:	50 Marks			
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks			
Total Hours	:	45(T)	Total	:	100 Marks			
Credits	:	3	SEE Duration	:	3 Hrs			

	Course Objectives
1.	To understand the construction and characteristics of sensors
2.	To introduce students the criteria for selecting a sensor for a particular measurement.
3.	To study functional elements and static characteristics of instruments.
4.	To familiarize students with the basic techniques of designing the required signal conditioning for a particular
	sensor.
5.	To know about the standards for smart sensors infrastructure.

Module - 1	No. of Hours
Introduction to sensors and transducers, Principle of sensing and transduction, Difference	
betweentransducer and sensor, Classification of sensors. Principle of working and applications of	
light sensors, Potentiometers, force and pressure sensors, temperature sensors, proximity switches	9
and Hall Effect sensors.	
Module - 2	No. of Hours
Transducer and classification: Primary & Secondary, active & passive transducers, analog & digital	
modes of operation, null & deflection methods. I/O configuration of measuring instruments &	
instrument system- methods of correction for interfering & modifying inputs. Static characteristics:	9
Meaning of static calibration, accuracy, precision & bias. Combination of component errors in	
overall systemaccuracy calculation. Static sensitivity, linearity, threshold, resolution, hysteresis and	
dead space.	
Module - 3	No. of Hours
Capacitive transducer - various arrangements, Inductive transducer, LVDT, RTD temperature	
characteristics, thermistor characteristics, Active type: Thermocouple – characteristics. Optical and	
Radiation Pyrometers: Fundamentals, Radiation detectors, Strain gauges-types, Gauge factor,	9
configuration.	
Electrical actuation system: Electrical systems, Mechanical switches, solenoids, Relays, DC/AC	
motors, Stepper motors & Servo Motors.	
Module - 4	No. of Hours
Signal Conditioning: Introduction - Hardware - Digital 1/0, Analog to digital conversions, resolution,	
Filtering Noise using passive components - Registers, capacitors, amplifying signals using OP amps.	
Digital Signal Processing - Digital to Analog conversion, Low pass, high pass, notch filtering.Data	9
acquisition systems (DAQS), data loggers, Supervisory control and data acquisition	
(SCADA), Communication methods.	
Module - 5	No. of Hours
Smart sensors: Introduction, Primary Sensors, Excitation, Converters, Compensation, Information	
Coding/Processing, Data Communication, Standards for Smart Sensor Interface, the Automation.	9
Sensors Applications: On-board Automobile Sensors (Automotive Sensors), Home Appliance	
Sensors.	

Cours	Course Outcomes: At the end of the course, the students will be able to					
CO1	Comprehend, classify and analyse the behaviour of different types of sensors.					
CO2	Analyse the characteristics and performance measures of sensors and select suitable sensor for the					
	givenindustrial applications.					
CO3	Gain the knowledge about electrical actuation systems.					
CO4	Learn fundamentals of signal conditioning, data acquisition and communication systems.					
CO5	Apply the various smart sensors in the Automotive and home appliance applications.					

Text Bo	oks
1.	D. Patranabis, "Sensors and Transducers", 2 nd Edition, PHI Learning Pvt. Ltd., New Delhi, India, 2013.
2.	Jon S. Wilson, "Sensor Technology Hand Book", Newnes Publishing Company, Boston, USA, 2005.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Referen	Reference Text Books								
1.	A.K. Sawhney, Puneet Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation",								
	DhanpatRai and Co. Pvt. Ltd., New Delhi, India, 2014.								
2.	Ramon Pallas-Areny, John G. Webster, "Sensors and Signal Conditioning", 2 nd Edition, Wiley India Pvt.								
	Ltd., India, 2012.								

Web links and Video lectures (e-Resources)

1. https://onlinecourses.nptel.ac.in/noc19_ee41/preview

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	2	-	1	1	-	-	2	-	2	1
CO2	1	2	1	1	1	-	-	-	-	2	-
CO3	2	-	-	1	1	-	-	-	-	2	-
CO4	2	2	-	1	1	-	-	-	-	2	-
CO5	1	-	-	1	1	-	-	-	-	2	1

Level 1-High, Level 2-Moderately, Level 3-Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Robotics and Automation

SEMESTER-IV							
MICROCONTROLLERS							
	Category: IPCC						
Course Code	:	B24RA403	CIE	:	50 Marks		
Teaching Hours/Week (L:T:P: S)	:	3:0:2	SEE	:	50 Marks		
Total Hours	:	45(T) + 15(P)	Total	:	100 Marks		
Credits	:	4	SEE Duration	:	3 Hrs		

	Course Objectives						
1.	To understand the difference between Microprocessor and Microcontroller and embedded microcontrollers.						
2.	2. Analyze the basic architecture of 8051microcontroller.						
3.	Program 8051 microcontroller using Assembly Language and C						
4.	4. Understand the operation and use of inbuilt Timers/Counters and Serial port of 8051						
5.	Understand the interrupt structure of 8051 and Interfacing I/O devices using I/O ports of 8051.						

Module – 1: Microcontroller	No. of Hours
Microcontroller: Microprocessor Vs Microcontroller, Micro controller & Embedded Processors,	
Processor Architectures-Harvard Vs Princeton & RISC Vs CISC, 8051 Architecture- Registers, Pin	9
diagram, I/O ports functions, Internal Memory organization. External Memory (ROM & RAM)	
interfacing. (Text book 1-1.1, Text book 2-1.0, 1.1, 3.0, 3.1, 3.2, 3.3)	
Module – 2: Instruction Set	No. of Hours
Instruction Set: Assembler Directives, 8051 Addressing Modes, Data Transfer Instructions,	
Arithmetic instructions, Logical Instructions, Jump & Call Instructions Stack & Subroutine	
Instructions of 8051 (with examples in assembly Language). (Text book 1-2.5,Text book 2- Chapter	9
5,6,7,8)	
Module – 3: Timers/Counters & Serial port programming	No. of Hours
Timers/Counters & Serial port programming: Basics of Timers & Counters, Data types & Time	
delay in the 8051 using C, Programming 8051 Timers, Mode 1 & Mode 2 Programming (Text book	
2- 3.4, Text book 1- 7.1, 9.1) Basics of Serial Communication, 8051 Connection to RS232,	9
Programming the 8051 to transfer data serially & to receive data serially using C.(Text book 2- 3.5,	
Text book 1- 10.1,10.2,10.3,10.5)	
Module- 4: Interrupt Programming	No. of Hours
Interrupt Programming: Basics of Interrupts, 8051 Interrupts, Programming Timer Interrupts,	
Programming Serial Communication Interrupts, Interrupt Priority in 8051(Assembly Language only)	9
(Text book 2- 3.6, Text book 1- 11.1,11.2,11.4,11.5)	
Module-5: I/O Port Interfacing & Programming	No. of Hours
I/O Port Interfacing & Programming: LCD interfacing, DAC 0808 Interfacing, ADC 0804	
interfacing, Stepper motor interfacing, DC motor control & Pulse Width Modulation (PWM) using C	
only. (Text book 1- 12.1, 13.1, 13.2, 17.2, 17.3)	9

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Describe the difference between Microprocessor and Microcontroller, Types of Processor Architectures and						
	Architecture of 8051Microcontroller.						
CO2	Discuss the types of 8051 Microcontroller Addressing modes & Instructions with Assembly Language						
	Programs.						
CO3	Explain the programming operation of Timers/Counters and Serial port of 8051 Microcontroller.						
CO4	Illustrate the Interrupt Structure of 8051 Microcontroller & its programming.						
CO5	Develop C programs to interface I/O devices with 8051 Microcontroller.						

Text Books								
1.	The "8051 Microcontroller and Embedded Systems – Using Assembly and C", Muhammad Ali Mazidi and							
	Janice Gillespie Mazidi and Rollind. Mckinlay; Phi, 2006 / Pearson, 2006.							
2.	"The 8051 Microcontroller", Kenneth j. Ayala, 3 rd edition, Thomson/Cengage Learning.							

Reference Books							
1.	"The 8051 Microcontroller Based Embedded Systems", Manish K Patel, McGraw Hill, 2014, ISBN: 978-93-						
	329-0125-4.						

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

2. "Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, Pearson Education, 2005.

Web links and Video lectures (e-Resources)

https://youtu.be/8MLV5GP7FMY?si=R5PW1AqINV4pO-JK

https://youtu.be/yYjPAhJ YHM?si=C50l8qGBDlV5dSAu

https://youtu.be/2-geyR_aM28?si=QO3IvO3_i92DcgX8

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

Theory						
IA Test	Exam conducted	Scaled down to	Average of best	Total		
	for		two tests			
IA-1	50	30				
IA-2	50	30	30			
IA-3	50	30		50/2=25		
Two Assignments	2×10=20	10	10			
Two Quizzes	2×10=20	10	10			

LAB								
Continuous performance and record writing	Each experiments evaluated for 10 marks	Scaled down to 05 marks	5+20=25					
Internal Test + Viva voce	Exam conducted for 50 marks	Scaled down to 20 marks						

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.
- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

LABORATORY

Practical Component of IPCC (12 Experiments)

Experiments using Keil software.

Sl. No	List of Experiments
	PROGRAMMING
1.	Data Transfer - Block move, Exchange, Sorting, Finding largest element in an array.
2.	Arithmetic Instructions - Addition/subtraction, multiplication and division, square, Cube(Bit manipulations).
3.	Counters.
4.	Boolean & Logical Instructions (Bit manipulations).
5.	Conditional CALL & RETURN.
6.	Code conversion
7.	Programs to generate delay. Programs using serial port and on-Chip timer /Counter.
	INTERFACING
	Write ALP/C programs to interface 8051 chip to Interfacing modules to develop single chip solutions.
8.	Stepper and DC motor control interface to 8051.
9.	Generate different waveforms Sine, Square, Triangular, Ramp etc. using DAC interface to 8051; change the
	frequency and amplitude.
10.	External ADC and Temperature control interface to 8051.
11.	Alphanumeric LCD panel and Hex keypad input interface to 8051.
12.	Write a C program to (i) transmit and (ii) to receive a set of characters serially by interfacing 8051 to a
	terminal
	<u> </u>

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	-	3	2	3	-	-	-	-	1	1
CO2	3	-	3	2	3	-	-	-	-	1	1
CO3	3	-	3	2	3	-	-	-	-	1	1
CO4	3	-	3	2	3	-	-	-	-	1	1
CO5	3	-	3	2	3	-	-	-	-	1	1

Level 1-High, Level 2-Moderate, Level 3-Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Robotics and Automation

SEMESTER IV						
MEASUREMENT SYSTEMS						
		Category:	IPCC			
Course Code	:	B24RA404	CIE	:	50 Marks	
Teaching Hours L:T:P : 3:0:2 SEE : 50 Marks					50 Marks	
Total Hours : 45(T) + 15(P) Total : 100 Marks						
Credits	:	4	SEE Duration	:	3 Hrs	

	Course Objectives
1.	To provide basic knowledge of metrology and dimensional measurement techniques, focusing on limits, fits,
	tolerances, and gauging in precision engineering.
2.	To introduce the principles of measurement systems, transducers, and signal conditioning in engineering
	instrumentation.
3.	To explain the principles, materials, and applications of sensors, actuators, and smart micro-systems in modern
	engineering.
4.	To introduce with foundational knowledge of instrument classifications and the working principles of various
	electromechanical measuring instrument.
5.	To introduce the fundamentals of nanotechnology, nanostructures, and advanced microscopy for precise
	nanoscale measurement and characterization.

Module – 1:Fundamentals of Engineering Metrology and Dimensional Measurement Systems	No.of Hours
Introduction to Metrology: Definition, Objectives of metrology, Material Standards, Wavelength Standards, Classification of standards, Line and End standards, Calibration of End bars. System of Limits, Fits, Tolerance and Gauging: Definitions, Tolerance, Tolerance analysis (addition & subtraction of tolerances) Inter changeability & Selective assembly. Class & grade of tolerance, Fits, Types of fits. Hole base system and Shaft base system. Taylor's principle, Types of limit gauges.	8
Module – 2:Measurement Systems and Instrumentation Fundamentals	No.of Hours
Measurement system and basic concepts of measurement methods: Definition, Significance of measurement, generalized measurement system, Static characteristics- Accuracy, Precision, Calibration, Threshold, Sensitivity, Hysteresis, Repeatability, Linearity, Loading effect, Dynamic characteristics- System response, Time delay. Classification of errors. Transducers: Transfer efficiency, Primary and Secondary transducers, Electrical transducers, Mechanical, Electronic transducers, Relative comparison of each type of transducers. working principles of strain, pressure, temperature, and LVDT measurement devices. Intermediate, Modifying and Terminating Devices: Mechanical systems- Bourdon Tube pressure gauge, Electrical and Electronics intermediate, modifying and terminating devices- Electronic amplifiers. Terminating devices, Cathode ray oscilloscope and Electronic Gripper, Vaccum gripper in Robotics.	10
Module – 3: Micro and Smart Sensor-Actuator Systems in Measurement Technology	No.of Hours
Micro And Smart Devices And Systems: Principles and Materials: Definitions and salient features of sensors, actuators, and systems. Sensors: Silicon capacitive accelerometer, Piezo-resistive pressure sensor, Blood analyzer, Conductometric gas sensor, Fiber-optic gyroscope. Actuators: Silicon micro-mirror arrays, Piezo-electric based inkjet print- head, Electrostatic combdrive, Magnetic micro relay, Shape- memory-alloy based actuator, Electro-thermal actuator. Systems: Micro gas turbine, Portable clinical analyzer.	9
Module 4: Electromechanical Insturments	No.of Hours
Measuring instrument classifications-Instrument types, absolute and secondary instruments, Comparision instruments. Construction and Operations of Electromechanical Instruments- Permanent magnet moving coil instrument, Electrodynamic instrument, Moving-Iron instrument, Electrostatic instrument, Thermal-type instrument and Galvanometer.	9
Module 5: Nano-Metrology and Advanced Microscopy Techniques	No.of Hours
Nano-metrology: Nanotechnology definition, importance of Nano-dimension, classification of Nanostructures, applications. Introduction to microscopy, Transmission Electron Microscope(TEM), applications of TEM, Scanning Electron Microscope(SEM), applications of SEM, Scanning Tunnelling	9

CONTROL D FEMALE

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Microscope (STM), applications of STM, Atomic Force Microscope, applications of AFM, Force Measurement using AFM, X-Ray Diffraction System: Principles, Bragg Law, Two-dimensional XRD System, Applications of XRD System.

Course	Outcomes: At the end of the course, the students will be able to
CO1	Understand and apply metrology principles, measurement standards, and design gauges for engineering components.
CO2	Explain measurement system characteristics, classify transducers, and analyze intermediate and terminating devices in signal processing.
CO3	Identify, describe, and analyze the principles and applications of micro and smart sensors, actuators, and integrated systems.
CO4	Able to classify instruments and explain the construction and operation of key electromechanical measuring devices
CO5	Understand and apply nano-metrology techniques like TEM, SEM, STM, AFM, and XRD for analyzing nanomaterials and structures.

Text Bo	oks
1.	N.V. Raghavendra & L. Krishnamurthy, "Engineering Metrology and Measurements", Oxford University
	Press,2013 ISBN: 9780198085492.
2.	Julian W. Gardner, Vijay K. Varadan, Osama O. Awadelkarim, "Microsensors, MEMS, and Smart Devices",
	Wiley, 1 st Edition, 2001, ISBN: 9780471861096.

Referen	ce Text Books
1.	Vikram K. Varadan, Jyhwen Wang, and Osama O. Awadelkarim, "Smart Material Systems and MEMS:
	Design and Development Methodologies", John Wiley & Sons, 2006, ISBN: 9780471678190.
2.	Donald A. Neamen, "Microelectronics Circuit Analysis and Design", McGraw-Hill Education, 4 th Edition,
	ISBN: 9780073380701.
3.	Dr. Thalappil Pradeep, Dr. S. Ramakrishna, Dr. S. S. R. Anjaneyulu,"Textbook on Nanoscience and
	Nanotechnology (2012)", McGraw-Hill Education, 2012, ISBN: 9780070702355.
4.	David A. Bell, "Electronic Instrumentation and Measurements", Oxford University Press, 3 rd Edition,
	ISBN:0-19-569614-X.

Web links and Video lectures (e-Resources)

- 1. https://archive.nptel.ac.in/courses/112/104/112104250
- 2. https://archive.nptel.ac.in/courses/112/103/112103261
- 3. https://archive.nptel.ac.in/courses/108/105/108105153
- 4. https://archive.nptel.ac.in/courses/108/105/108 105064
- 5. https://nptel.ac.in/courses/118102003

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CONTROL D FORM

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for 50 marks and scaled down to 20 marks.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

		Theory		
IA Test	Exam conducted for	Scaled down to	Average of best two tests	Total
IA-1	50	30		
IA-2	50	30	30	
IA-3	50	30		50/2=25
Two Assignments	2×10=20	10	10	
Two Quizzes	2×10=20	10	10	

LAB					
Continuous performance and record writing	Each experiments evaluated for 10 marks	Scaled down to 05 marks	5+20=25		
Internal Test + Viva	Exam conducted for 50	Scaled down to 20			
voce	marks	marks			

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.
- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

LABORATORY

Practical Component of IPCC (12 Experiments)

Sl. No	Name of the experimewnt
1.	Liner measurement and angular measurements: Slip gauges- Measurement of angle-sine bar, Sine centre,
	Angle gauges, and Optical instruments for angular measurements.
2.	Calibration of Strain measurement instrument.
3.	Calibration of Pressure measurement instrument.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

4.	Calibration of measuring temperature using different Sensors & study the characteristics of
	Thermocouple, RTD and Thermistor.
5.	Calibration of LVDT for displacement Measurement.
6.	Calibration of Speed Measurement (Magnetic Pickup & Photo reflective)
7.	Study of MCLEOD Gauge.
8.	Study of Rotameter.
9.	Study of Vibration Measurement instrument.
10.	Study of Angular type Capacitance Measurement Trainer

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	2	2	2	3						1
CO2	3	3	2	2	3						1
CO3	3	2	2	2	3	1	1			1	2
CO4	3	2	2	2	3						2
CO5	1	1	-	-	-	1	2	-	-	1	-

Level 3 - High, Level 2 - Moderate, Level 1 - Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-IV					
	ROBO	OT PROGRAMMING & SIM	IULATION LAB		_
		Category: PCCL			
Course Code	:	B24RA405L	CIE	:	50 Marks
Teaching Hours L:T:P	:	0:0:2	SEE	:	50 Marks
Total Hours	:	15(P)	Total	:	100 Marks
Credits	:	1	SEE Duration	:	3Hrs

Ī		Course Objectives
Ī	1.	To introduce different types of robotics and demonstrate them to identify different parts and components
Ī	2.	To write Robot programming for simple operations.

Sl. No	List of Experiments
1.	Determination of maximum and minimum position of links.
2.	Verification of transformation (Position and orientation) with respect to gripper and world Coordinate system.
3.	Estimation of accuracy, repeatability and resolution.
4.	Robot programming and simulation for pick and place.
5.	Robot programming and simulation for Color identification.
6.	Robot programming and simulation for Shape identification.
7.	Robot programming and simulation for machining (cutting, welding).
8.	Robot programming and simulation for any industrial process (Packaging, Assembly).
	Demonstration Experiments (For CIE)
9.	Robot programming and simulation for writing practice.
10.	Robot programming and simulation for multi process
11.	Robot programming and simulation for 3D printing

	CourseOutcomes: Attheendofthecourse,thestudentswillbeableto						
Ī	CO1	Use of robotic simulation software to model the different types of robots.					
ĺ	CO2	Use of robot simulation Software to calculate the Work volume for different robots.					

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	1	-	-	-	3	1	-	-	1	2
CO2	3	1	-	-	-	3	1	-	-	1	2

Level3-High, Level2-Moderate, Level1-Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Robotics and Automation

SEMESTER-IV					
		DIGITAL COMP			
		Category: ESC/	ETC/PLC-IV		
Course Code	:	B24RA461	CIE	:	50 Marks
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks
Total Hours	:	45(T)	Total	:	100 Marks
Credits	:	3	SEE Duration	:	3 Hrs

	Course Objectives
1.	To prepare the students with fundamental knowledge in the field of digital communication systems.
2.	To use of different modulation techniques used in communication.
3.	To analyze signaling over AWGN and Band limited channels.
4.	To understand and analyze the concepts of spread spectrum modulation.
5.	To design and apply the concepts of information theory and coding.

Module – 1: Digital Modulation Techniques:	No.of Hours
Phase shift Keying techniques using coherent detection: generation, detection and error probabilities of BPSK and QPSK, M–ary PSK, M–ary QAM. Frequency shift keying techniques using Coherent detection: BFSK generation, detection and error probability. Non coherent orthogonal modulation techniques: BFSK, DPSK Symbol representation, Block diagrams treatment of Transmitter and Receiver, Probability of error (without derivation of probability of error equation).	9
Module – 2: Signalling over AWGN Channels	No.of Hours
Introduction, Geometric representation of signals, Gram- Schmidt Orthogonalization procedure, Conversion of the continuous AWGN channel into a vector channel (without statistical characterization), Optimum receivers using coherent detection: ML Decoding, Correlation receiver, matched filter receiver.	9
Module – 3: Signal design for Band limited Channels	No.of Hours
Design of band limited signals for zero lSI-The Nyquist Criterion (statement only), Design of band limited signals with controlled lSI-Partial Response signals, Probability of error for detection of Digital PAM: Symbol-by-Symbol detection of data with controlled lSI.	9
Module – 4: Spread Spectrum Modulation	No.of Hours
Principles of Spread Spectrum: Spread Spectrum Communication Systems: Model of a Spread Spectrum Digital Communication System, Direct Sequence Spread Spectrum Systems, Effect of Despreading on a narrowband Interference, Probability of error (statement only), Some applications of DS Spread Spectrum Signals, Generation of PN Sequences, Frequency Hopped Spread Spectrum, CDMA based on IS95.	9
Module – 5: Information Theory and Coding	No.of Hours
Introduction to Information Theory:Measure of information, Average information content of symbols in long independent sequences. Source Coding:Encoding of the Source Output, Shannon's Encoding Algorithm, Shannon-Fano Encoding Algorithm, Huffman coding. Error Control Coding:Introduction, Examples of Error control coding, methods of Controlling Errors, Types of Errors, types of Codes.	9

	0.4
Course	Outcomes: At the end of the course, the students will be able to
CO1	Analyze different digital modulation techniques and choose the appropriate modulation technique for the
	given specifications.
CO2	Test and validate symbol processing and performance parameters at the receiver under ideal and corrupted
	bandlimited channels.
CO3	Differentiate various spread spectrum schemes and compute the performance parameters of communication
	system.
CO4	Apply the fundamentals of information theory and Perform source coding for given message.

Text Bo	oks
1.	Simon Haykin, "Digital Communication Systems", John Wiley & sons, 1st Edition, 2014, ISBN 978-0-471-
	64735-5.
2.	John G Proakis and Masoud Salehi, "Fundamentals of Communication Systems", 2014 Edition, Pearson
	Education, ISBN 978-8-131-70573-5.

Tunded 1 Prop

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Reference Books

1. Bernard Sklar, "Digital Communications – Fundamentals and Applications", 2nd Edition, Pearson Education, 2016, ISBN: 9780134724058.

2. K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996.

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	2	-	-	1	1	-	1	-	-	1	1
CO2	2	-	-	1	1	-	1	-	-	1	1
CO3	2	-	-	1	1	-	1	-	-	1	1
CO4	2	-	-	1	1	-	1	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-IV					
SMART MATERIALS AND STRUCTURES					
		Category: ESC/ETC/PI			_
Course Code	:	B24RA462	CIE	:	50Marks
Teaching Hours L:T:P	:	3:0:0	SEE	:	50Marks
Total Hours	:	45(T)	Total	:	100Marks
Credits	:	3	SEE Duration	:	3hrs

	Course Objectives
1.	To acquire a comprehensive understanding of smart materials.
2.	To gain knowledge about smart sensors and their functionalities.
3.	To develop an understanding of smart actuators and their applications.
4.	To explore the concept of smart composites and their unique properties.
5.	To acquire knowledge about smart structures and materials and their practical applications.

Module-1: Overview of Smart Materials	No. of Hours		
Introduction to Smart Materials, Principles of Piezoelectricity, Perovskite, Piezoceramic Materials, Single Crystals vs Polycrystalline Systems, Piezoelectric Polymers, Principles of Magnetostriction, Rare earth Magneto strictive materials, Giant Magnetostriction and Magneto-resistance Effect, Introduction to Electro-active Materials, Electronic Materials, Electro-active Polymers, Ionic Polymer	9		
Matrix Composite (IPMC), Shape Memory Effect, Shape Memory Alloys, Shape Memory Polymers.	,		
Module-2: High-Band Width, Low Strain Smart Sensors	No. of Hours		
Piezoelectric Strain Sensors, In-plane and Out-of Plane Sensing, Shear Sensing, Accelerometers, Effect of Electrode Pattern, Active Fibre Sensing, Magneto strictive Sensing, Villari Effect, Matteuci Effect and Nagoka-Honda Effect, Magnetic Delay Line Sensing, Application of Smart Sensors for Structural Health Monitoring (SHM), System Identification using Smart Sensors.			
Module-3: Smart Actuators	No. of Hours		
Modelling Piezoelectric Actuators, Amplified Piezo Actuation – Internal and External Amplifications, Magnetostrictive Actuation, Joule Effect, Wiedemann Effect, Magneto volume Effect, Magnetostrictive Mini Actuators, IPMC and Polymeric Actuators, Shape Memory Actuators, Active Vibration Control, Active Shape Control, Passive Vibration Control, Hybrid Vibration Control	9		
Module-4: Smart Composites	No. of Hours		
Review of Composite Materials, Micro and Macro-mechanics, Modelling Laminated Composites based on Classical Laminated Plate Theory, Effect of Shear Deformation, Dynamics of Smart Composite Beam, Governing Equation of Motion, Finite Element Modelling of Smart Composite Beams	9		
Module-5: ER & MR Fluids and MEMS	No. of Hours		
ER and MR Fluids: Mechanisms and properties, Fluid Composition and behavior. MEMS – Mechanical Properties of MEMS Materials, Scaling of Mechanical Systems, Fundamentals of Theory, The Intrinsic Characteristics of MEMS, Miniaturization, Microelectronics Integration.	9		

Course	Outcomes: At the end of the course, the students will be able to
CO1	Communicate and connect to the surrounding
CO2	Fostera responsible connection with society by actively involving oneself in the community Where they work.
CO3	Notice the needs and problems of the community and involve the main problem–solving
CO4	Develop among themselves a sense of social & civic responsibility & utilize their Knowledge in finding practical solutions to individual and community problems.
CO5	Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes.

${\bf MOOGAMBIGAI\ CHARITABLE\ AND\ EDUCATIONAL\ TRUST}$

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Text	Text Books						
1.	Bria	anCulshaw,SmartStructuresandMaterials,ArtechHouse,2000					
2.	Gau	nenzi,P.,SmartStructures,Wiley,2009.					

	Refere	nce Text Books
Ī	1.	Cady, W.G., Piezoelectricity, Dover Publications.
ſ	2.	"SmartMaterialsandStructures", M.V.GandhiandB.S.ThompsonChapmen&Hall, London, 1992(ISBN:0412370107)
	3.	"SmartStructuresAnalysisandDesign", A.V.Srinivasan, CambridgeUniversityPress, NewYork, 2001, (ISBN:0521650267).

Web links and Video lectures (e-Resources)

- 1. https://apm.iitm.ac.in/smart_materials.html
- 2. https://home.iitm.ac.in/aarajan/smc%20lab.html
- 3. https://youtu.be/ZIC5JFIHni4

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. Part-A should contain minimum Two or Four quiz questions from each module of 02 marks/01 marks each. Part-A is Compulsory and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CO-PO Mapping

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	-	-	-	3	-	-	-	2	1
CO2	2	2	=	=	-	2	-	-	=	2	1
CO3	2	3	-	-	-	2	-	-	-	2	1
CO4	3	2	-	-	-	3	-	-	=	2	1
CO5	3	2	-	-	-	3	-	-	-	2	1

Level3-High, Level2-Moderate, Level1-Low

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-IV					
BASIC CONTROL SYSTEMS					
		Category: ESC/ETC/PL	.C-1V		
Course Code	:	B24RA463	CIE	:	50 Marks
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks
Total Hours	:	45(T)	Total	:	100 Marks
Credits	:	3	SEE Duration	:	3 Hrs

	Course Objectives
1.	Understand basics of control systems and design mathematical models using block diagram reduction, SFG, etc.
2.	Understand Time domain and Frequency domain analysis.
3.	Analyze the stability of a system from the transfer function
4.	Familiarize with the State Space Model of the system.

Module – 1: Introduction to Control Systems	No.of Hours
Types of Control Systems, Effect of Feedback Systems, Differential equation of Physical Systems -	
Mechanical Systems, Electrical Systems, Analogous Systems.	9
Text 1: 1.1, 2.2	
Module – 2: Block diagrams and signal flow graphs	No.of Hours
Transfer functions, Block diagram algebra and Signal Flow graphs.	0
Text1: 2.4, 2.5, 2.6	9
Module – 3: Time Response of feedback control systems	No.of Hours
Standard test signals, Unit step response of First and Second order Systems. Time response	
specifications, Time response specifications of second order systems, steady state errors and error	9
constants. Introduction to PI, PD and PID Controllers (excluding design).	9
Text1: 5.3, 5.4, 5.5	
Module – 4: Stability analysis and Root Locus Techniques	No.of Hours
Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability	
analysis: more on the Routh stability criterion. The root locus concepts, Construction of root loci.	9
Text1: 6.1, 6.2, 6.4, 6.5, 7.1, 7.2, 7.3	
Module – 5: Frequency domain analysis and stability	No.of Hours
Correlation between time and frequency response, Bode Plots, Experimental determination of transfer	
function. Mathematical preliminaries, Nyquist Stability criterion, (Stability criteria related to polar	
plots are excluded)	9
State Variable Analysis: Introduction to state variable analysis: Concepts of state, state variable and	9
state models. State model for Linear continuous –Time systems, solution of state equations.	
Text1: 8.1, 8.2, 8.4, 9.2, 9.3, 12.2, 12.3, 12.6	

Course	Course Outcomes: At the end of the course, the students will be able to							
CO1	Deduce transfer function of a given physical system, from differential equation representation or Block							
	Diagram representation and SFG representation.							
CO2	Calculate time response specifications and analyse the stability of the system.							
CO3	Draw and analyse the effect of gain on system behaviour using root loci.							
CO4	Perform frequency response Analysis and find the stability of the system.							

Text Bo	oks
1.	Control Systems Engineering, I J Nagrath, M. Gopal, New age international Publishers, 5 th edition.

Web links and Video lectures (e-Resources)	
• https://nptel.ac.in/courses/108106098	

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. Part-B contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	1	1	-	1	1	-	-	-	-	1	1
CO2	1	1	1	1	1	-	-	-	-	1	1
CO3	1	1	-	1	1	-	-	-	-	1	1
CO4	1	1	1	1	1	-	-	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-IV									
JAVA PROGRAMMING									
		Category: ESC/ETC/PL							
		(Common to ECE, EEE,	, RA)						
Course Code	:	B24EC464	CIE	:	50 Marks				
Teaching Hours L:T: P	:	3:0:0	SEE	:	50 Marks				
Total Hours : 45(T) Total : 100 Marks									
Credits	:	3	SEE Duration	:	3 Hrs				

	Course Objectives									
1.	To learn primitive constructs JAVA programming language.									
2.	To understand Object Oriented Programming Features of JAVA.									
3.	To gain knowledge on packages, multithreaded programming and exceptions.									

Module–1: An Overview of Java	No. of Hours
Object-Oriented Programming (Two Paradigms, Abstraction, The Three OOP Principles), Using	
Blocks of Code, Lexical Issues (Whitespace, Identifiers, Literals, Comments, Separators, The Java	
Keywords).	
Data Types, Variables, and Arrays: The Primitive Types (Integers, Floating-Point Types,	
Characters, Booleans), Variables, Type Conversion and Casting, Automatic Type Promotion in	
Expressions, Arrays, Introducing Type Inference with Local Variables.	
Operators: Arithmetic Operators, Relational Operators, Boolean Logical Operators, The	9
Assignment Operator, The Operator, Operator Precedence, Using Parentheses.	
ControlStatements: Java's Selection Statements (if, The Traditionals witch), Iteration	
Statements (while, do-while, for, The For-Each Version of the for Loop, Local Variable Type	
Inference in a for Loop, Nested Loops), Jump Statements (Using break, Using continue, return).	
Module–2: Introducing Classes	No. of Hours
Class Fundamentals, Declaring Objects, Assigning Object Reference Variables, Introducing Methods,	
Constructors, The this Keyword, Garbage Collection.	
Methods and Classes: Overloading Methods, Objects as Parameters, Argument Passing, Returning	9
Objects, Recursion, Access Control, Understanding static, Introducing final, Introducing Nested and	
Inner Classes.	
Module-3: Inheritance and Interfaces	No. of Hours
Inheritance: Inheritance Basics, Using super, Creating a Multilevel Hierarchy, When Constructors	
Are Executed, Method Overriding, Dynamic Method Dispatch, Using Abstract Classes, Using final	
with Inheritance, Local Variable Type Inference and Inheritance, The Object Class.	9
Interfaces: Interfaces, Default Interface Methods, Use static Methods in an Interface, Private	
Interface Methods.	
Module-4: Packages and Exceptions	No. of Hours
Packages: Packages, Packages and Member Access, Importing Packages.	
Exceptions: Exception-HandlingFundamentals, ExceptionTypes, UncaughtExceptions, Using try and	9
catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built- in	
Exceptions, Creating Your Own Exception Subclasses, Chained Exceptions.	
Module-5: Multithreaded Programming	No. of Hours
Multithreaded Programming: The Java Thread Model, The Main Thread, Creating a Thread,	
Creating Multiple Threads, Using is Alive() and join(), Thread Priorities, Synchronization, Interthread	
Communication, Suspending, Resuming, and Stopping Threads, Obtaining a Thread's State.	
Enumerations, Type Wrappers and Autoboxing: Enumerations (Enumeration Fundamentals, The	
values() and value Of() Methods), Type Wrappers (Character, Boolean, The Numeric Type	9
Wrappers), Autoboxing (Autoboxing and Methods, Autoboxing/Unboxing Occurs in Expressions,	
Autoboxing /Unboxing Boolean and Character Values).	

Course	Outcomes: At the end of the course, the students will be able to
CO1	Demonstrate proficiency in writing simple programs involving branching and looping structures.

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

CO2	Design a class involving data members and methods for the given scenario.
CO3	Apply the concepts of inheritance and inter faces in solving real world problems.
CO4	Use the concept of packages and exception handling in solving complex problem.
CO5	Apply concepts of multi threading, autoboxing and enumerations in program development

Text Bo	oks
1.	HerbertSchildt, Java The Complete Reference, 7 th Edition, Tata Mc Graw Hill, 2007.

Referen	ce Text Books								
1.	MaheshBhaveandSunilPatekar,"ProgrammingwithJava",FirstEdition,PearsonEducation,2008, ISBN:9788131720806								
2.	RajkumarBuyya,SThamarasiselvi,xingchenchu,ObjectorientedProgrammingwithjava,TataMcGraw Hill education private limited								
3.	EBalagurusamy, Programming with Java Aprimer, Tata McGraw Hill companies								
4.	AnitaSethandBLJuneja,JAVAOnestepAhead,OxfordUniversityPress,2017								

Web linl	Web links and Video lectures (e-Resources)								
1.	JavaTutorial:https://www.geeksforgeeks.org/java/								
2.	Introduction To Programming In Java (by Evan Jones, Adam Marcus and Eugene Wu):https://ocw.mit.edu/courses/6-092-introduction-to-programming-in-java-january-iap-2010/								
3.	JavaTutorial:https://www.w3schools.com/java/								
4.	JavaTutorial:https://www.javatpoint.com/java-tutorial								

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	-	1	2	2	1	1	-	1	2	1
CO2	1	-	1	2	2	-	-	-	1	1	1
CO3	2	-	1	2	3	-	-	-	1	1	1
CO4	2	-	1	1	1	1	1	-	1	2	1
CO5	1	-	1	2	2	1	1	-	2	1	1

Level3 -High, Level2- Moderate, Level1- Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

		SEMESTER-IV			
	PR	OGRAMMABLE LOGIC CO			
		Category: AEC/SEC-			
		(Common to ECE, R.	A)		
Course Code	:	B24EC481	CIE	:	50 Marks
Teaching Hours L: T: P	:	1:0:0	SEE	:	50 Marks
Total Hours	:	15(T)	Total	:	100 Marks
Credits	:	1	SEE Duration	:	1 Hr

	Course Objectives
1.	To understand the need for automation in the industry with basic controller mechanisms involved.
2.	To study programming concepts to achieve the desired goal or to define the various steps involved in the automation.
3.	To understand programming involved with basic subroutine functions.
4.	To make use of the internal hardware circuits of automation circuit to control the devices during various states by monitoring the timers and counters.
5.	To handle the data of the I/O devices to interface the data with the controller and auxiliary devices.

Module – 1: Introduction	No. of Hours
Programmable logic controller (PLC), role in automation (SCADA), advantages and disadvantages, hardware, internal architecture, sourcing and sinking (Textbook 1: 1.1 to 1.4) I/O devices and Processing: list of input and output devices, examples of applications. I/O processing, input/output units, signal conditioning, remote connections, networks, processing inputs I/O addresses. (TextBook1: 2.1 to 2.3 and 4.1 to 4.7).	3
Module – 2 : Programming	No. of Hours
Ladder programming- ladder diagrams, logic functions, latching, multiple outputs, entering programs, functional blocks, program examples like location of stop and emergency switches. (TextBook1: 5.1 to 5.7).	3
Module – 3: Programming Methods	No. of Hours
Instruction Lists- Ladder programs and Instruction lists, Branch codes, Programming Examples-Signal lamp-valve operation task. Sequential Function Charts- Branching and convergence. (TextBook1: 6.1 to 6.3).	3
Module – 4: Internal Relays	No. of Hours
ladder programs, battery-backed relays, one-shot operation, set and reset, master control relay (TextBook1: 7.1 to 7.6). Timers and counters: Types of timers, ON and OFF- delay timers, pulse timers, forms of counter, programming, up and down counters. (TexBook1: 9.1 to 9.6).	3
Module – 5: Shift register and data handling	No. of Hours
shift registers, ladder programs, registers and bits, data handling, arithmetic functions. (TextBook1: 11.1 to 11.2 and 12.1 to 12.3)	3

Course	Course Outcomes: At the end of the course, the students will be able to				
CO1	Understand the PLC and how to construct PLC ladder diagrams.				
CO2	Demonstrate an application with programming.				
CO3	Analyze the characteristics of registers and conversion examples.				
CO4	Apply PLC functions to timing and counting applications.				
CO5	Analyse the analog operation of PLC and demonstrate the robot applications with PLC.				

Text Bo	oks
1.	Programmable Logic controllers-W Bolton, 5 th edition/6 th edition, Elsevier- newness, 2009/2015.
2.	Programmable logic controllers - principles and applications"-John W. Webb, Ronald A Reiss, Pearson education, 5 th edition, 2007.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Referen	nce Text Books
1.	Programmable Logic Controllers"- E. A Paar, 3 rd Edition, An Engineers Guide. Newness, 2003.
2.	"Introduction to Programmable Logic Controller"- Garry Dunning, 3 rd Edition, Thomson Asia Pte Ltd.
	Publication, 2006

Web links and Video lectures (e-Resources)

- 1.https://nptel.ac.in/courses/122106025
- 2. https://nptel.ac.in/courses/108105132
- 3. https://nptel.ac.in/courses/117104072

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks (Multiple Choice Questions), after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	-	-	-	3	1	-	-	1	2
CO2	2	2	-	-	-	2	1	-	-	2	2
CO3	1	1	-	-	-	1	2	-	-	2	1
CO4	1	1	-	-	-	1	2	-	-	1	1
CO5	1	1	-	-	-	1	2	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Robotics and Automation

SEMESTER-IV						
INTRODUCTION TO AI&ML Category: AEC/SEC-IV						
Course Code	:	B24RA482	CIE	:	50Marks	
Teaching Hours L:T:P	:	1:0:0	SEE	:	50Marks	
Total Hours	:	15(T)	Total	:	100Marks	
Credits	:	1	SEE Duration	:	1hrs	

	Course Objectives
1.	To impart artificial intelligence principles, techniques and history.
2.	To assess the applicability, strengths, and weakness of the basic knowledge representation, problem-solving and
	learning methods in solving engineering problems.
3.	To develop intelligent systems by assembling solutions to concrete computational problems.

Module-1: Artificial Intelligence and its Issues	No. of Hours
Definitions-Importance of AI, Evolution of AI-Applications of AI, Classification of AI systems concerning	
the environment, Knowledge Inferring systems and planning, Uncertainty and towards Learning Systems.	3
Module–2: Overview to Problem Solving	No. of Hours
Problem-solving by Search, Problem space-State space, Blind Search-Types, and Performance	
measurement.	3
Module-3: Heuristic Search, Knowledge Representation, and Reasoning	No. of Hours
Types, Game play in Gemini-max algorithm, Alpha-Beta Pruning. Logical Systems Knowledge-Based	
Systems, Proposition a l Logic Constraints, Predicate Logic First Order Logic, Inference in First-Order	
Logic, On to logical Representations and Applications.	3
Module-4: Uncertainty and knowledge Reasoning	No. of Hours
Overview Definition of uncertainty, Bayes Rule Inference, Belief Network, Utility-Based System,	
Decision Network.	3
Module-5: Learning Systems	No. of Hours
Forms of Learning Types-Supervised, Unsupervised, Reinforcement Learning, Learning decision trees	3

Course	Outcomes: At the end of the course, the students will be able to			
CO1	Evaluate Artificial Intelligence (AI) methods and describe their foundations.			
CO2	Apply basic principles of AI in solutions that require problem-solving, inference, perception, knowledge representation, and learning.			
CO3	Demonstrate knowledge of reasoning and knowledge representation for solving real- world problems.			
CO4	Analyze and illustrate how search algorithms play vitalrole in problem solving			
CO5	Illustrate the construction of learning and expert system			

Go B

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

Text Bo	ooks
1.	Russell, S and Norvig, P. 2015. Artificial Intelligence-A Modern Approach, 3 rd edition, Prentice-Hall.
2.	Poole, D and Mackworth, A. 2010. Artificial Intelligence: Foundations of Computational Agents, Cambridge
	University Press.

Į	Reference Text Books								
	1.	Ric, E., Knight, Kand Shankar, B.2009. Artificial Intelligence, 3 rd edition, Tata McGraw Hill.							
Ī	2.	Luger, G.F. 2008. Artificial Intelligence Structures and Strategies for Complex Problem Solving, 6 th edition,							
		Pearson.							

Web links and Video lectures (e-Resources)

- 1. https://www.youtube.com/watch?v=wnqkfpCpK1g
- 2. https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python
- 3. https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/artificial-intelligencevs-machine-learning
- 4. https://youtu.be/t4K6lney7Zw
- 5. https://www.youtube.com/watch?v=QDX-1M5Nj7s

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks (Multiple Choice Questions), after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	-	-	=	3	-	-	=	2	1
CO2	2	2	=	-	=	2	-	-	=	2	1
CO3	2	3	-	-	-	2	-	-	-	2	1
CO4	3	2	=	-	=	3	-	-	=	2	1
CO5	3	2	=	-	=	3	-	-	=	2	1

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) Department of Robotics and Automation

SEMESTER-IV						
	PRINCIPLES OF ROBOTICS					
		Category: A	EC/SEC-IV			
CourseCode	:	B24RA483	CIE	:	50Marks	
TeachingHoursL:T:P		1:0:0	SEE	:	50Marks	
TotalHours	:	15(T)	Total	:	100Marks	
Credits	:	1	SEEDuration	:	01hrs	

	Course Objectives						
1.	1. To introduce the functional elements of Robotics.						
2.	2. To introduce the mechanics and control of manipulators.						
3.	3. To introduce dynamics and control of manipulators.						
4.	4. To impart knowledge on the direct and inverse kinematics.						
5.	To introduce the manipulator differential motion and control.						

Module-1: Basic Concepts	No. of Hours
Brief history-Types of Robot-Technology-Robot classifications and specifications-Design and	
controlissues- Various manipulators – Sensors - work cell - Programming languages.	3
Module-2: The Mechanics and Control of Mechanical Manipulators	No. of Hours
Description of position and orientation, Inverse kinematics of manipulators, Velocities, static forces,	
singularities.	3
Module-3: Dynamics	No. of Hours
Trajectory generation, Manipulator design and sensors, Linear position control, Nonlinear position control,	
Force control, Programming robots robot programming languages, Off-line programming and simulation.	3
Module-4: Direct and Inverse Kinematics	No. of Hours
Mathematical representation of Robots - Position and orientation - Homogeneous transformation- Various	
joints- Representation using the DenavitHattenberg parameters -Degrees of freedom-Direct kinematics-	3
Inverse kinematics.	
Module-5: Manipulator differential motion and statics	No. of Hours
Linear and angular velocities-Manipulator Jacobian-Prismatic and rotary joints-Inverse -Wrist and	
armsingularity - Static analysis - Force and moment Balance.	3

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1 Understand basic concept of robotics.							
CO2	Know about the mechanics and control in robotics.						
CO3 Know about the dynamics and control in robotics.							
CO4	O4 Know about the direct and inverse kinematics involved in Robotics.						
CO5	Know about the differential motion add statics in robotics.						

Text Books							
1.	JohnJ. Craig, Introduction to Robotics Mechanics and Control, Third edition, Pearson Education, 2009.						
2.	T.C Manjunath, Fundamental of robotics, Fourth edition, Nandu printers and publishers Private LTD, 2006.						

Ref	Reference Text Books								
1.	R.K. Mittal and I.J. Nagrath, Robotics and Control, Tata McGraw Hill, New Delhi, 4 th Reprint, 2005.								
2.	M.P. Groover, M. Weiss, R.N. Nageland N. G.Odrej, Industrial Robotics, McGraw-Hill Singapore, 1996.								

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks (Multiple Choice Questions), after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	-	=.	=.	3	-	=.	=.	2	1
CO2	2	2	-	-	-	2	-	-	-	2	1
CO3	2	3	-	-	-	2	-	-	-	2	1
CO4	3	2	-	-	-	3	-	-	-	2	1
CO5	3	2	-	-	-	3	-	_	_	2	1

Level3-High, Level2-Moderate, Level1-Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

SEMESTER-IV					
ARDUINO AND RASPBERRY Pi LAB					
		Category: AEC/SEC-			
		(Common to ECE, EEE	, RA)		
Course Code	:	B24EE484	CIE	:	50 Marks
Teaching Hours L: T: P	:	0:0:2	SEE	:	50 Marks
Total Hours	:	15(P)	Total	:	100 Marks
Credits		1	SEE Duration		3 Hrs

	Course Objectives									
1.	1. To understand interfacing of basic I/O devices (LEDs, buzzers, buttons) with Arduino/Raspberry Pi									
2.	To understand sensor interfacing (temperature, humidity, current, distance, analog sensors) and data acquisition									
3.	To understand actuator control using relays, motors, and real-time clock integration									
4.	To apply the cocept of wireless communication and IoT connectivity using Bluetooth and cloud platforms									
5.	To comprehend skills for measuring, monitoring, and transmitting energy-related parameters for smart applications									

Sl. No	List of Experiments
1.	i) To interface LED/Buzzer with Arduino and write a program to 'turn ON' LED for 1 sec after every 2
	seconds.
	ii) To interface Push button/Digital sensor (IR/LDR) with Arduino and write a program to 'turn ON'
	LED when push button is pressed or at sensor detection.
2.	i) To interface DHT11 sensor with Arduino and write a program to print temperature and humidity
	readings.
	ii) To interface OLED with Arduino and write a program to print temperature and humidity readings on
	it.
3.	To interface motor using relay with Arduino and write a program to 'turn ON' motor when push button is
	pressed.
4.	To interface Bluetooth with Arduino and write a program to send sensor data to Smartphone using Bluetooth.
5.	To interface Bluetooth with Arduino and write a program to turn LED ON/OFF when '1'/0' is received from
	Smartphone using Bluetooth.
6.	Write a program to interface an analog sensor (e.g., potentiometer or temperature sensor) with Arduino and
	display the analog values on the Serial Monitor.
7.	To interface a Real-Time Clock (DS3231/DS1307) module with Arduino and write a program to display the
	current date and time on the Serial Monitor.
8.	Write a program to measure an analog voltage (0-5V) using Arduino and display the measured voltage on the
	Serial Monitor.
9.	Interface a current sensor (e.g., ACS712) with Arduino and write a program to measure and display the
	current flowing through a load on the Serial Monitor.
10.	To interface a DC motor through a relay module with Arduino/ Raspberry Pi and write a Python program to
	turn ON the motor when a push button is pressed.
11.	Interface an ultrasonic sensor (HC-SR04) with Arduino/ Raspberry Pi and write a program to measure and
	display the distance in centimeters on the Serial Monitor.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Robotics and Automation

12. Write a python program on Raspberry Pi to upload temperature and humidity data to thing speak cloud.	
--	--

Course	Course Outcomes: At the end of the course, the students will be able to							
CO1	Understand the interfacing and control of digital devices such as LEDs and buzzers using Arduino.							
CO2	Understand sensor interface to acquire and display data from temperature, humidity, distance, voltage, and							
	current sensors.							
CO3	Design motor and relay-based actuation systems using sensor input for automation and control.							
CO4	Analyze communication techniques for exchanging data with smartphones and cloud servers using Bluetooth							
	and IoT.							
CO4	Understand and evaluate methods for measuring and transmitting sensor parameters using Raspberry Pi.							
CO5	Understand the interfacing and control of digital devices such as LEDs and buzzers using Arduino.							

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	2	-	-	2	-	-	-	-	-	2
CO2	3	2	-	2	3	-	-	-	-	-	2
CO3	3	3	3	2	3	-	-	-	1	1	2
CO4	3	3	2	2	3	1	-	-	2	2	2
CO5	3	3	2	2	3	2	2	1	2	2	3

Level 3 - High, Level 2 - Moderate, Level 1 - Low