

RAJARAJESWARI COLLEGE OF ENGINEERING

An Autonomous Institution

Under VTU, Approved by AICTE, UGC & GoK

No. 14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru

SCHEME & SYLLABUS

UG PROGRAM

DEPARTMENT OF CSE

3rd and 4th Semester

Academic Year 2025-26 (2024 Scheme)

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru–560074

Computer Science and Engineering

Bachelor of Engineering (B.E)

Scheme and Syllabus of III & IV Semester (2024 Scheme)

VISION

To empower young minds through technology, research and innovation, to produce technically competent and socially responsible professionals in higher education.

MISSION

- 1. To deliver excellence in education through innovative teaching, impactful research, and continuous skill development, preparing students to meet global challenges with technical expertise and ethical responsibility.
- To foster a transformative learning environment that integrates technology, research and practical experience, empowering students to become skilled professionals and socially conscious leaders.
- 3. To cultivate a culture of lifelong learning and professional excellence by encouraging creativity, research, and community engagement, equipping students with the skills to thrive in a dynamic world.
- 4. To provide a holistic educational experience that combines advanced technology, hands-on research, and community-focused learning, shaping students into competent, ethical professionals who contribute positively to society.

QUALITY POLICY

Rajarajeswari College of Engineering is committed to imparting quality technical education that nurtures competent, ethical professionals with global relevance. We ensure academic excellence through a dynamic, outcome-based curriculum, experienced faculty, and cutting-edge infrastructure. Continuous improvement is driven by innovation, research and strong industry collaboration. We foster holistic development and a progressive environment that supports lifelong learning, teamwork, and professional growth.

CORE VALUES

Academic Excellence, Integrity, Innovation, Global Competence, Continuous Improvement.

Computer Science and Engineering

DEPARTMENT VISION

To produce competent professionals who drive research, foster innovation, and develop technologies that address global challenges and inspire future generations.

DEPARTMENT MISSION

- 1. Provide extensive technical education to produce trained professionals and entrepreneurs.
- Establish a knowledge environment for progressive research by imparting industrial-based skill development courses on the growth of a modernized environment.
- 3. Create and develop innovative skills by collaborating with Industries to generate solutions for societal impact with moral standards.
- 4. To instill lifelong learning, adaptability, and resilience, equipping students to thrive in fast-evolving fields and continuously advance technology.

PROGRAM OUTCOMES (POs)

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)

PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems /components / processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)

PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modeling, analysis & interpretation of data to provide valid conclusions. (WK8).

PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modeling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)

PO6: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, WK7).

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)

PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences

PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.

PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Enable graduates to excel in higher education, conduct impactful research, and succeed in careers or entrepreneurship in Computer Science and Engineering.

PEO2: Ensure graduates develop the skills and mindset to continuously adapt to evolving technologies and acquire new knowledge.

PEO3: Cultivate professionalism and ethics in graduates, enabling them to contribute to societal progress and technological advancement.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Investigate complex problems across various domains, applying appropriate computational techniques to systematic design solutions and evaluate their effectiveness.

PSO2: Apply software engineering principles to design and develop high-quality, innovative software systems, utilizing contemporary and emerging information processing technologies.

INDEX

	III Semester						
Sl. No.	Course Code	Course Title	Page No.				
1.	B24MC301	Mathematics-III for CS	5				
2.	B24CS302	Data Structures and its applications	7				
3.	B24CS303	Digital Design and Computer Organization	9				
4.	B24CS304	Operating Systems	12				
5.	B24CS305L	Data Structures and its applications Lab	15				
6.	B24CS361	UNIX programming	19				
7.	B24IC362	Object Oriented Programming with C++	22				
8.	B24CG363	Embedded Systems	26				
9.	B24AI364	Web Technologies	28				
10.	B24CS381	Exploratory Data Analysis	30				
11.	B24CS382	Ethical Hacking	32				
12	B24CS383	App Development	34				
13.	B24CG384	Knowledge Engineering	36				

	IV Semester						
Sl. No. Course Code Course Title							
1.	B24MC401	Discrete Mathematics and Graph Theory	38				
2.	B24CS402	Database Management Systems	40				
3.	B24CS403	Microcontrollers	43				
4.	B24CS404	Design and Analysis of Algorithms	47				
5.	B24CS405L	Database Management Systems Lab	51				
6.	B24CS461	Programming in Java	54				
7.	B24CG462	Robotic Process Automation	58				
8.	B24IS463	Capacity planning for IT	60				
9.	B24CS464	Green IT and Sustainability	62				
10.	B24IS481	Microsoft Power BI	64				
11.	B24CS482	DevOps	66				
12	B24IS483	Multimedia and Animation	68				
13.	B24CS484	Digital and Mobile Forensics	70				

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Scheme of Teaching and Examinations: 2024

(Effective from the Academic Year 2025-26)

Semester: III

					Teaching Hours / Week &				Credits	Examination				
S. No	Course Category and Course Code Course Title		TD / PSB	Lecture	Tutorial	Practical	Practical SDA Credits		CIE Marks	SEE Duration Hrs	E Marks	Total Marks		
					L	Т	P	S		CI	Ω	SEE	Tot	
1.	BSC	B24MC301	Mathematics-III for CS (Common to CSE, ISE, AIML, CSE(IC), CSD)	Maths	3	0	0	0	3	50	3	50	100	
2.	PCC	B24CS302	Data Structures and its applications (Common to CSE, ISE, AIML, CSE(IC), CSD)	CSE	3	0	0	0	3	50	3	50	100	
3.	IPCC	B24CS303	Digital Design and Computer Organization (Common to CSE, ISE, AIML, CSE(IC), CSD)	AI	3	0	2	0	4	50	3	50	100	
4.	IPCC	B24CS304	Operating Systems (Common to CSE, ISE, AIML, CSE(IC), CSD)	ISE	3	0	2	0	4	50	3	50	100	
5.	PCCL	B24CS305L	Data Structures and its applications Lab (Common to CSE, ISE, AIML, CSE(IC), CSD)	CSE	0	0	2	0	1	50	3	50	100	
6.	ESC	B24YY 36X	ESC/ETC/PLC - III	AI/CS/IS/IC/CG	3	0	0	0	3	50	3	50	100	
7.	UHV	B24SCK307	Social Connect and Responsibility	Any Dept.	0	0	2	0	1	50	3	50	100	
	AEC/		Ability Enhancement Course / Skill Enhancement		1	0	0				1			
8.	SEC	B24YY38X	Course – III (Theory/Lab)	AI/CS/IS/IC/CG	0	0	2	0	1	50	3	50	100	
9.	NCMC	B24NCK39X	National Service Scheme / National Cadet Corps / Physical Education / Yoga / Music	HSMC	1	0	0		PP	50		-	50	
							T	OTAL	20	450		400	850	

BSC: Basic Science Course, HSMC: Humanity, Social sciences including Management courses, IPCC: Integrated Professional Core Course, PCC: Professional Core Course, PCCL: Professional Core Course, PCCL: Professional Core Course, PCC: Professional Core Course, PCC: Professional Core Course, PCC: Professional Core Course, AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course L: Lecture, T: Tutorial, P: Practical S:SDA-Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation, PP/NP: Pass/Not Pass, YY: Programme Code (EC, CS, IS etc.), X: 1/2/3/4, K: Indicates Common Course to all the streams of Engineering

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Scheme of Teaching and Examinations: 2024

(Effective from the Academic Year 2025-26)

Engineering Science Course / Emerging Technology Course / Programming Language Course (ESC/ETC/PLC) - III					
B24CS361	UNIX Programming	B24IC362	Object Oriented Programming with C++		
B24CG363	Embedded Systems	B24AI364	Web Technologies		

Ability Enhancement Course / Skill Enhancement Course (AEC/SEC) – III					
B24CS381	Exploratory Data Analysis	B24CS382	Ethical Hacking		
B24CS383	App Development	B24CG384	Knowledge Engineering		

Non Credit Mandatory Courses (NCMC)					
B24NCK391	National Service Scheme (NSS)	B24NCK392	National Cadet Corps (NCC)		
B24NCK393	Physical Education (PE)	B24NCK394	Yoga		
B24NCK395	Music				

All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE), National Cadet Corps (NCC), Music and Yoga (YOG) with the concerned coordinator of the course during the first week of III/IV/V/VI semesters. Colleges are required to submit the Continuous Internal Evaluation (CIE) marks for the activities completed by students under selected course each semester. The students should be allowed to engage in different activities/courses each semester. For example, a student who participates in sports in the 3rd semester could choose to undertake NSS in the next semester and Yoga in another semester. This approach aligns with the student-centric focus of the National Education Policy (NEP) 2022 and helps distribute the workload related Physical Education/NSS/Yoga/NCC/Music of more evenly across different departments. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

HoD Dean-Academics Principal

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Scheme of Teaching and Examinations: 2024 (Effective from the Academic Year 2025-26)

Semester: IV

					Teachir	g Hour	Examination						
S. No		rse Category Course Code	Course Title 24/Q1		Lecture	Tutorial	Practical	SDA	Credits	CIE Marks	SEE Duration Hrs	E Marks	otal Marks
					L	T	P	S		CI		SEE	To
1.	PCC	B24MC401	Discrete Mathematics and Graph Theory (Common to CSE, CSD, ISE)	Maths	3	0	0	0	3	50	3	50	100
2.	PCC	B24CS402	Database Management Systems (Common to CSE, ISE, AIML, CSE(IC), CSD)	CSE	3	0	0	0	3	50	3	50	100
3.	IPCC	B24CS403	Microcontrollers (Common to CSE, CSD)	CSE	3	0	2	0	4	50	3	50	100
4.	IPCC	B24CS404	Design and Analysis of Algorithms (Common to CSE, ISE, AIML, CSE(IC), CSD)	CG	3	0	2	0	4	50	3	50	100
5.	PCCL	B24CS405L	Database Management Systems Lab (Common to CSE, ISE, AIML, CSE(IC), CSD)	CSE	0	0	2	0	1	50	3	50	100
6.	ESC	B24YY46X	ESC/ETC/PLC - IV	AI/CS/IS/IC/CG	3	0	0	0	3	50	3	50	100
7.	UHV	B24UHK407	Universal Human Values	Any Dept.	1	0	0	0	1	50	1	50	100
8.	AEC/	B24YY48X	Ability Enhancement Course / Skill Enhancement	AI/CS/IS/IC/CG	1	0	0	0	1	50	1	50	100
8.	SEC	B241148X	Course – III (Theory/Lab)	AI/CS/IS/IC/CG	0	0	2		1	50	3	30	100
9.	NCMC	B24NCK49X	National Service Scheme / National Cadet Corps / Physical Education / Yoga / Music	HSMC	1	0	0		PP	50		-	50
	1	1		1	1	1	Т	OTAL	20	450		400	850

BSC: Basic Science Course, HSMC: Humanity, Social sciences including Management courses, IPCC: Integrated Professional Core Course, PCC: Professional Core Course, PCCL: Professional Core Course, IPCC: Professional Core Course, PCC: Professional Core Course, PCC: Professional Core Course, AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course L: Lecture, T: Tutorial, P: Practical S:SDA-Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation, PP/NP: Pass/Not Pass, YY: Programme Code (EC, CS, IS etc.), X: 1/2/3/4, K: Indicates Common Course to all the streams of Engineering

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Scheme of Teaching and Examinations: 2024

(Effective from the Academic Year 2025-26)

Engineering Science Course /Emerging Technology Course / Programming language Course (ESC/ETC/PLC) - IV					
B24CS461	Programming in Java	B24CG462	Robotic Process Automation		
B24IS463	Capacity planning for IT	B24CS464	Green IT and Sustainability		

Ability Enhancement Course / Skill Enhancement Course (AEC/SEC) – IV					
B24IS481	Microsoft Power BI	B24CS482	Devops		
B24IS483	Multimedia and Animation	B24CS484	Digital and Mobile Forensics		

Non Credit Mandatory Courses (NCMC)					
B24NCK491	National Service Scheme (NSS)	B24NCK492	National Cadet Corps (NCC)		
B24NCK493	Physical Education (PE)	B24NCK494	Yoga		
B24NCK495	Music				

All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE), National Cadet Corps (NCC), Music and Yoga (YOG) with the concerned coordinator of the course during the first week of III/IV/V/VI semesters. Colleges are required to submit the Continuous Internal Evaluation (CIE) marks for the activities completed by students under selected course each semester. The students should be allowed to engage in different activities/courses each semester. For example, a student who participates in sports in the 3rd semester could choose to undertake NSS in the next semester and Yoga in another semester. This approach aligns with the student-centric focus of the National Education Policy (NEP) 2022 and helps distribute the workload related Physical Education/NSS/Yoga/NCC/Music of more evenly across different departments. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

HoD Dean-Academics Principal

III - Semester Syllabus

SEMESTER-III MATHEMATICS-III FOR CS Category: BSC (Common to CSE/ISE/AIML/CSE(IC)/CSD)					
Course Code	:	B24MC301	CIE	:	50 Marks
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks
Total Hours	:	45(T)	Total	:	100 Marks
Credits	:	3	SEE Duration	:	3 Hrs

	Course Objectives
1.	To introduce the concept of random variables, probability distributions, specific discrete and continuous
	distributions with practical application in Computer Science Engineering and social life situations.
2.	To understand and analyze the probabilistic relationships between multiple random variables and determining
	relationships like co-variance and correlation.
3.	To Provide the principles of statistical inferences and the basics of hypothesis testing with emphasis on some
	commonly encountered hypotheses.
4.	To Determine whether an input has a statistically significant effect on the system's response through ANOVA
	testing.

Module-1: Probability Distributions	No. of Hours
Review of basic probability theory. Random variables (discrete and continuous), probability mass	
and density functions. Mathematical expectation, mean and variance. Binomial, Poisson and normal	9
distributions- problems (derivations for mean and standard deviation for Binomial and Poisson	
distributions only)-Illustrative examples. Exponential distribution.	
Module-2: Joint probability distribution & Markov Chain	No. of Hours
Joint Probability distribution for two discrete random variables, expectation, covariance and	
correlation.	9
Markov Chain: Introduction to Stochastic Process, Probability Vectors, Stochastic matrices, Regular	
stochastic matrices, Markov chains, Higher transition probabilities, Stationary distribution of Regular	
Markov chains and absorbing states.	
Module-3: Statistical Inference 1	No. of Hours
Introduction, sampling distribution, standard error, testing of hypothesis, levels of significance, test of	
significances, confidence limits, simple sampling of attributes, test of significance for large samples,	9
comparison of large samples.	
Module-4 :Statistical Inference 2	No. of Hours
Sampling variables, central limit theorem and confidences limit for unknown mean. Test of	
Significance for means of two small samples, students distribution, Chi-square distribution as a test of	9
goodness of fit. F-Distribution.	
Module-5 :Design of Experiments & ANOVA	No. of Hours
Principles of experimentation in design, Analysis of completely randomized design, randomized block	
design. The ANOVA Technique, Basic Principle of ANOVA, One-way ANOVA, Two-way	9
ANOVA, Latin-square Design, and Analysis of Co-Variance.	

Course	Course Outcomes: At the end of the course, the students will be able to								
CO1	Explain the basic concepts of probability, random variables, probability distribution.								
CO2	Apply suitable probability distribution models for the given scenario.								
CO3	Apply the notion of a discrete-time Markov chain and n-step transition probabilities to solve the given problem.								
CO4	Use statistical methodology and tools in the engineering problem-solving process and compute the confidence intervals for the mean of the population.								
CO5	Compute the confidence intervals for the mean of the population. Apply the ANOVA test related to engineering problems.								

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Text Bo	oks
1.	Ronald E. Walpole, Raymond H Myers, Sharon L Myers & Keying Ye "Probability & Statistics for Engineers
	& Scientists", Pearson Education, 9 th edition, 2017.
2.	Peter Bruce, Andrew Bruce & Peter Gedeck "Practical Statistics for Data Scientists" O'Reilly Media, Inc., 2 nd
	edition 2020.

Reference Text Books										
1.	Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 9 th Edition, 2006.									
2.	B. S. Grewal "Higher Engineering Mathematics", Khanna publishers, 44 th Edition, 2021.									
3.	G Haribaskaran "Probability, Queuing Theory & Reliability Engineering", Laxmi Publication, Latest Edition,									
	2006									

Web links and Video lectures (e-Resources)

- 1. https://nptel.ac.in/courses/12286025
- 2. VTU EDUSAT PROGRAMME 20
- 3. http://www.class-central.com/subject/math(MOOCs)

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
COI	3	3	2	1	-	-	_	_	1	-	2
CO2	3	3	2	1	-	-	-	-	1	-	2
CO3	3	3	2	1	-	-	-	-	1	-	2
CO4	3	3	2	1	-	-	-	-	1	-	2
CO5	3	3	2	1	-	-	-	-	1	-	2

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-III										
DATA STRUCTURES AND ITS APPLICATIONS										
	Category: PCC									
	(Common to CSE, ISE, AIML, CSE(IC), CSD)									
Course Code	:	B24CS302	CIE	:	50 Marks					
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks					
Total Hours	:	45 (T)	Total	:	100 Marks					
Credits	:	3	SEE Duration	:	3 Hrs					

	Course Objectives								
1.	Explain fundamentals of data structures and their applications essential for programming/problem solving.								
2.	Apply stack, Queue and recursion operations to solve real world problems.								
3.	Illustrate linear representation of data structures: Stack, Queues, Lists, Trees and Graphs.								
4.	Demonstrate sorting and searching algorithms.								
5.	Find suitable data structure during application development/Problem Solving.								

Module – 1: Introduction	No. of Hours
Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory, Dynamically allocated arrays. Array Operations: Traversing, inserting, deleting, searching, and sorting. Multidimensional Arrays, Polynomials and Sparse Matrices. Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms. Programming Examples.	9
Module – 2: Stacks, Queues and Recursion	No. of Hours
Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix expression. Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function. Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple Stacks and Queues. Programming Examples.	9
Module – 3: Linked Lists	No. of Hours
Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation; Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion. Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues. Applications of Linked lists – Polynomials, Sparse matrix representation. Programming Examples	9
Module – 4: Trees	No. of Hours
Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder; Additional Binary tree operations. Threaded binary trees, Binary Search Trees – Definition, Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression, Programming Examples	9
Module – 5: Graphs	No. of Hours
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation Of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search. Sorting and Searching: Insertion Sort, Radix sort, Address Calculation Sort. Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing. Files and Their Organization: Data Hierarchy, File Attributes, Text Files and Binary Files, Basic File Operations, File Organizations and Indexing	9

Course C	Course Outcomes: At the end of the course, the students will be able to							
CO1	Use different types of data structures, operations and algorithms							
CO2	Apply searching and sorting operations on files							
CO3	Use stack, Queue, Lists, Trees and Graphs in problem solving							
CO4	Implement all data structures in a high-level language for problem solving.							
CO5	Identify the alternative implementations of data structure to solve real world problems							

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Text Books								
1.	Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2 nd Edition, Universities Press,							
	2014.							
2.	Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Edition, McGraw Hill, 2014.							

Reference Text Books									
1.	Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2 nd Edition, Cengage								
	Learning, 2014.								
2.	Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.								
3.	Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, 2 nd Edition,								
	McGraw Hill, 2013								

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A** is **Compulsory** and it carries 20 Marks.
- 4. Part-B contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	-	1	1	-	-	1	-	1	2
CO2	2	2	-	1	1	1	-	1	-	2	2
CO3	1	1	-	1	1	-	-	1	-	2	1
CO4	1	1	-	1	1	1	-	1	-	1	1
CO5	1	1	-	1	1	-	-	1	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-III						
DIGITAL DESIGN AND COMPUTER ORGANIZATION						
	Category: IPCC					
(Common to CSE, ISE, AIML, CSE(IC), CSD)						
Course Code	:	B24CS303	CIE	:	50 Marks	
Teaching Hours L: T: P	:	3:0:2	SEE	:	50 Marks	
Total Hours	:	45(T)+15(P)	Total	:	100 Marks	
Credits	:	4	SEE Duration	:	3 Hrs	

	Course Objectives
1.	To demonstrate the functionalities of binary logic system
2.	To explain the working of combinational and sequential logic system
3.	To realize HDL Verilog programmes
4.	To realize the basic structure of computer system
5.	To illustrate the working of I/O operations and processing unit

Module – 1: Introduction to Digital Design	No. of Hours		
Binary Logic, Basic Theorems And Properties Of Boolean Algebra, Boolean Functions, Digital Logic Gates, Introduction, The Map Method, Four-Variable Map, Don't-Care Conditions, NAND and NOR Implementation, Other Hardware Description Language – Verilog Model of a simple circuit. Text book 1: 1.9, 2.4, 2.5, 2.8, 3.1, 3.2, 3.3, 3.5, 3.6, 3.9	9		
Module – 2: Combinational Logic	No. of Hours		
Introduction, Combinational Circuits, Design Procedure, Binary Adder- Subtractor, Decoders, Encoders, Multiplexers. HDL Models of Combinational Circuits – Adder, Multiplexer, Encoder. Sequential Logic: Introduction, Sequential Circuits, Storage Elements: Latches, Flip-Flops. Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9, 4.10, 4.11, 4.12, 5.1, 5.2, 5.3, 5.4.	9		
Module – 3: Basic Structure of Computers	No. of Hours		
Functional Units, Basic Operational Concepts, Bus structure, Performance – Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement. Machine Instructions and Programs: Memory Location and Addresses, Memory Operations, Instruction and Instruction sequencing, Addressing Modes. Text book 2: 1.2, 1.3, 1.4, 1.6, 2.2, 2.3, 2.4, 2.5	9		
Module – 4: Input/output Organization	No. of Hours		
Accessing I/O Devices, Interrupts – Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Direct Memory Access: Bus Arbitration, Speed, size and Cost of memory systems. Cache Memories – Mapping Functions. Text book 2: 4.1, 4.2.1, 4.2.2, 4.2.3, 4.4, 5.4, 5. 5.	9		
Module – 5: Basic Processing Unit			
Some Fundamental Concepts: Register Transfers, Performing ALU operations, fetching a word from Memory, Storing a word in memory. Execution of a Complete Instruction. Pipelining: Basic concepts, Role of Cache memory, Pipeline Performance. Text book 2: 7.1, 7.2, 8.1	9		

Course Outcomes: At the end of the course, the students will be able to					
CO1	Apply the K–Map techniques to simplify various Boolean expressions.				
CO2	Design different types of combinational and sequential circuits along with Verilog programs.				
CO3	, , ,				
CO4	Explain the approaches involved in achieving communication between processor and I/O devices.				
CO5	Analyze internal Organization of Memory and Impact of cache/Pipelining on Processor Performance.				

Text Bo	oks
1.	M. Morris Mano & Michael D. Ciletti, Digital Design With an Introduction to Verilog Design, 5 th edition,
	Pearson Education.
2.	Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer Organization, 5 th Edition, Tata McGraw Hill.

Web links and Video lectures (e-Resources):	
1. Web links and Video Lectures (e-Resources): https://cse11-iiith.vlabs.ac.in/	

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

		Theory		
IA Test	Exam conducted	Scaled down to	Average of best	Total
	for		two tests	
IA-1	50	30		
IA-2	50	30	30	
IA-3	50	30		50/2=25
Two Assignments	2×10=20	10	10	
Two Quizzes	2×10=20	10	10	

LAB					
Continuous performance and record writing	Each experiments evaluated for 10 marks	Scaled down to 05 marks	5+20=25		
Internal Test + Viva	Exam conducted for 50	Scaled down to 20			
voce	marks	marks			

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.
- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

LABORATORY

Practical Component of IPCC (10 Experiments)

Sl. No	Name of the experiments
1.	Given a 4-variable logic expression, simplify it using appropriate technique and simulate the same using
	basic gates.
2.	Design a 4 bit full adder and subtractor and simulate the same using basic gates.
3.	Design a 2 bit half adder and subtractor and simulate the same using NAND and NOR gates
4.	Given a 4-variable logic expression, simplify it using appropriate technique and simulate the same using
	Verilog HDL
5.	Design Verilog HDL to implement simple circuits using structural, Data flow and Behavioural model.
6.	Design Verilog HDL to implement Binary Adder-Subtractor - Half and Full Adder, Half and Full
	Subtractor.
7.	Design Verilog HDL to implement Decimal adder.
8.	Design Verilog program to implement Different types of multiplexer like 2:1, 4:1 and 8:1.
9.	Design Verilog program to implement types of De-Multiplexer.
10.	Design Verilog program for implementing various types of Flip-Flops such as SR, JK and D.

CO-PO Mapping

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	1	_	-	-	3	1	-	-	1	2
CO2	2	2	-	-	-	2	1	1	-	2	2
CO3	1	1	-	-	-	1	2	-	-	2	1
CO4	1	1	-	-	-	1	2	-	-	1	1
CO5	1	1	-	-	-	1	2	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-III					
OPERATING SYSTEMS Category: IPCC (Common to CSE, ISE, AIML, CSE(IC), CSD)					
Course Code	:	B24CS304	CIE	:	50 Marks
Teaching Hours L: T: P:S	:	3:0:2	SEE	:	50 Marks
Total Hours	:	45 (T) + 15 (P)	Total	:	100 Marks
Credits	:	4	SEE Duration	:	3 Hrs

	Course Objectives
1.	Introduce the fundamental concepts of operating systems, their functions, and types.
2.	Explain process management, scheduling algorithms, and inter-process communication.
3.	Describe memory management techniques, including paging, segmentation, and virtual memory.
4.	Illustrate file systems, storage management, and input-output operations.
5.	Explore synchronization mechanisms, deadlocks, and security aspects in operating systems.
6.	Provide insights into modern operating systems such as Linux, Windows, and mobile OS.

Module – 1: Introduction to Operating Systems	No. of Hours
Definition, Purpose, and Evolution of Operating Systems, Types of Operating Systems: Batch, Time-	
Sharing, Distributed, Real-Time, and Mobile OS, Operating System Structure: Monolithic, Layered,	
Microkernel, and Hybrid, System Calls and Operating System Services	9
Module – 2: Process Management & CPU Scheduling	No. of Hours
Processes: Concept, Process Control Block (PCB), Process States, Threads: Single vs. Multi-threading, User vs. Kernel Threads, CPU Scheduling: Scheduling Criteria, Preemptive & Non-preemptive Scheduling, Scheduling Algorithms: FCFS, SJF, Priority Scheduling, Round Robin,	
Multi-Level Queue Scheduling, Inter process Communication (IPC) and Synchronization, Deadlocks: Detection, Prevention, Avoidance (Banker's Algorithm), Recovery	9
Module – 3: Memory Management	No. of Hours
Memory Allocation: Contiguous & Non-Contiguous Allocation, Paging and Segmentation, Virtual	
Memory: Demand Paging, Page Replacement Algorithms (FIFO, LRU, Optimal), Thrashing and	9
Working Set Model	
Module – 4: File System & Storage Management	No. of Hours
File Concepts: File Attributes, File Types, File Access Methods, File System Structure: Directory Structure, File Allocation Methods (Contiguous, Linked, Indexed), Disk Scheduling Algorithms:	
FCFS, SSTF, SCAN, C-SCAN, LOOK, File Protection & Security	9
Module – 5: I/O Systems, Security, and Case Studies	No. of Hours
I/O Hardware, Device Drivers, Interrupt Handling, Security and Protection in Operating Systems,	
Authentication and Access Control Mechanisms, Case Study: UNIX/Linux, Windows, Android	9
Operating System	

Course C	Course Outcomes: At the end of the course, the students will be able to					
CO1	Understand the basic structure, functionalities, and design principles of an operating system.					
CO2	Analyze process scheduling techniques and inter-process communication mechanisms.					
CO3	Implement memory management techniques such as paging, segmentation, and virtual memory.					
CO4	Evaluate file system structures, disk scheduling algorithms, and storage management strategies.					
CO5	Apply synchronization techniques to avoid race conditions and deadlocks.					

Textbool	ks
1.	Abraham Silberschatz, Peter B. Galvin, Greg Gagne-"Operating System Concepts, 10 th Edition, Wiley, 2018".
2.	William Stallings – "Operating Systems: Internals and Design Principles, 9 th Edition, Pearson, 2018".

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Reference	ee Text Books
1.	Andrew S. Tanenbaum – "Modern Operating Systems, 4 th Edition, Pearson, 2015".
2.	Dhananjay M.Dhamdhere -"Operating Systems: A Concept-Based Approach, 3 rd Edition, McGraw-Hill, 2017".
3.	Gary Nutt – "Operating Systems, 3 rd Edition, Pearson, 2004".

LABORATORY

Practical Component of IPCC (10 Experiments)

Sl. No	Name of the Experiment
1.	Demonstrate how a child process is created using fork() and how it executes a new program using exec()
2.	Create a program where the parent process writes to a pipe and the child reads from it (unidirectional communication).
3.	Use shmget(), shmat(), and semctl() to demonstrate shared memory-based communication between two processes.
4.	Implement both First Come First Serve and Shortest Job First (non-preemptive) scheduling algorithms and compare their performance.
5.	Simulate Round Robin (preemptive) and Priority (non-preemptive or preemptive) scheduling with average time calculations.
6.	Simulate logical to physical address mapping using a page table. Take page number and offset as input.
7.	Demonstrate address translation using segment table consisting of base and limit values.
8.	Simulate a hierarchical file system where users can create, delete, search files and directories (like mkdir, rm, ls).
9.	Simulate the Banker's Algorithm to determine whether a system is in a safe state for resource allocation.
10.	Write a C program that uses system() calls to run shell commands (e.g., list files, view processes) and parse the output for analysis.

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

		Theory		
IA Test	Exam conducted	Scaled down to	Average of best	Total
	for		two tests	
IA-1	50	30		
IA-2	50	30	30	
IA-3	50	30		50/2=25
Two Assignments	2×10=20	10	10	
Two Quizzes	2×10=20	10	10	

	LA	AB	
Continuous performance and record writing	Each experiments evaluated for 10 marks	Scaled down to 05 marks	5+20=25
Internal Test + Viva	Exam conducted for 50	Scaled down to 20	
voce	marks	marks	

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.
- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	2	1	-	-	-	-	-	-	-	2
CO2	2	1	2	1	3	-	-	-	-	-	1
CO3	2	1	2	1	2	-	-	-	-	-	1
CO4	2	2	-	-	1	-	-	-	-	-	2
CO5	1	1	2	1	-	-	-	-	-	-	1

Level 3 – High, Level 2 – Moderate, Level 1 -Low

SEMESTER-III						
	DATA STRUCTURES AND ITS APPLICATIONS LAB					
		Category:	PCCL			
	(Common to CSE, ISE, AIML, CSE(IC), CSD)					
Course Code	:	B24CS305L	CIE	:	50 Marks	
Teaching Hours L : T : P	:	0:0:2	SEE	:	50 Marks	
Total Hours	:	15(P)	Total	:	100 Marks	
Credits	:	1	SEE Duration	:	3 Hrs	

	Course Objectives
1.	To implement linear data structures such as arrays, stacks, queues, linked lists
2.	To apply suitable data structures for solving various computational problems effectively and efficiently
3.	To implement nonlinear data structures such as trees, and graphs
4.	Apply nonlinear data structure to provide the solution for the given problem
5.	To familiarize students with file handling and explore applications of data structures in real-world scenarios

Sl. No	Name of the Program
1.	Develop a Program in C for the following:
	a) Declare a calendar as an array of 7 elements (A dynamically Created array) to represent 7 days of a week.
	Each Element of the array is a structure having three fields. The first field is the name of the Day (A
	dynamically allocated String), The second field is the date of the Day (A integer), the third field is the
	description of the activity for a particular day (A dynamically allocated String).
	b) Write functions create(), read() and display(); to create the calendar, to read the data from
	the keyboard and to print weeks activity details report on screen.
2.	Develop a Program in C for the following operations on Strings.
	a. Read a main String (STR), a Pattern String (PAT) and a Replace String (REP)
	b. Perform Pattern Matching Operation: Find and Replace all occurrences of PAT in STR with REP if PAT
	exists in STR. Report suitable messages in case PAT does not exist in STR Support the program with
	functions for each of the above operations. Don't use Built-in functions.
3.	Develop a menu driven Program in C for the following operations on STACK of Integers (Array
	Implementation of Stack with maximum size MAX)
	a. Push an Element on to Stack
	b. Pop an Element from Stack
	c. Demonstrate how Stack can be used to check Palindrome
	d. Demonstrate Overflow and Underflow situations on Stack
	e. Display the status of Stack
	f. Exit
	Support the program with appropriate functions for each of the above operations
4.	Develop a Program in C for converting an Infix Expression to Postfix Expression. Program
	should support for both parenthesized and free parenthesized expressions with the operators: +,
	-, *, /, % (Remainder), ^ (Power) and alphanumeric operands.
5.	Develop a Program in C for the following Stack Applications
	a. Evaluation of Suffix expression with single digit operands and operators: $+$, $-$, $*$, $/$, $\%$, $^{\wedge}$.

	b. Solving Tower of Hanoi problem with n disks
6.	Develop a menu driven Program in C for the following operations on Circular QUEUE of
	Characters (Array Implementation of Queue with maximum size MAX)
	a. Insert an Element on to Circular QUEUE
	b. Delete an Element from Circular QUEUE
	c. Demonstrate Overflow and Underflow situations on Circular QUEUE
	d. Display the status of Circular QUEUE
	e. Exit
	Support the program with appropriate functions for each of the above operations
7.	Develop a menu driven Program in C for the following operations on Singly Linked List (SLL)
	of Student Data with the fields: USN, Name, Programme, Sem, PhNo
	a. Create a SLL of N Students Data by using front insertion.
	b. Display the status of SLL and count the number of nodes in it
	c. Perform Insertion / Deletion at End of SLL
	d. Perform Insertion / Deletion at Front of SLL(Demonstration of stack)
	e. Exit
8.	Develop a menu driven Program in C for the following operations on Doubly Linked List
	(DLL) of Employee Data with the fields: SSN, Name, Dept, Designation, Sal, PhNo
	a. Create a DLL of N Employees Data by using end insertion.
	b. Display the status of DLL and count the number of nodes in it
	c. Perform Insertion and Deletion at End of DLL
	d. Perform Insertion and Deletion at Front of DLL
	e. Demonstrate how this DLL can be used as Double Ended Queue.
	f. Exit
9.	Develop a Program in C for the following operations on Singly Circular Linked List (SCLL)
	with header nodes
	a. Represent and Evaluate a Polynomial $P(x,y,z) = 6x2y2z-4yz5+3x3yz+2xy5z-2xyz3$
	b. Find the sum of two polynomials POLY1(x,y,z) and POLY2(x,y,z) and store the
	result in POLYSUM(x,y,z)
	Support the program with appropriate functions for each of the above operations
10.	Develop a menu driven Program in C for the following operations on Binary Search Tree
	(BST) of Integers.
	a. Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2
	b. Traverse the BST in Inorder, Preorder and Post Order
	c. Search the BST for a given element (KEY) and report the appropriate message
	d. Exit
11.	Develop a Program in C for the following operations on Graph(G) of Cities
	a. Create a Graph of N cities using Adjacency Matrix.
	b. Print all the nodes reachable from a given starting node in a digraph using DFS/BFS
	I.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Given a File of N employee records with a set K of Keys (4-digit) which uniquely determine the records in
file F. Assume that file F is maintained in memory by a Hash Table (HT) of m memory locations with L as
the set of memory addresses (2-digit) of locations in HT. Let the keys in K and addresses in L are Integers.
Develop a Program in C that uses Hash function H: $K \rightarrow L$ as $H(K)=K \mod m$ (remainder method), and
implement hashing technique to map a given key K to the address space L. Resolve the collision (if any)
using linear probing.

Course	Course Outcomes: At the end of the course, the students will be able to								
CO1	Apply the concepts of pointers and structures in problem solving.								
CO2	Use different types of linked lists to solve problems.								
CO3	Demonstrate stack and queue data structures to solve problems.								
CO4	Use the Binary search tree and graph data structures to solve problems.								
CO5	Illustrate the operations performed on tree data structures, hash functions for problem solving.								

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

CO-PO Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	1	-	1	1	_	-	-	-	-	1
CO2	3	1	2	2	1	-	-	-	-	-	-
CO3	3	1	2	1	1	-	-	-	-	-	1
CO4	3	1	-	2	1	-	-	-	-	-	1
CO5	2	1	2	1	2	-	-	-	2	2	-

Level 3 – High, Level 2 – Moderate, Level 1 –Low

SEMESTER-III									
UNIX PROGRAMMING									
	Category: ESC/ETC/PLC-III								
(Common to CSE, CSD)									
Course Code	:	B24CS361	CIE	:	50 Marks				
Teaching Hours L: T: P	Teaching Hours L: T: P : 3:0:0 SEE : 50 Marks								
Total Hours : 45(T) Total : 100 Marks									
Credits	:	3	SEE Duration	:	3Hrs				

	Course Objectives								
1.	To help the students to understand effective use of Unix concepts, commands and terminology. Identify, access, and evaluate UNIX file system								
2.	Explain the fundamental design of the unix operating system								
3.	Familiarize with the systems calls provided in the unix environment								
4.	Design and build an application/service over the unix operating system								
5.	Familiarize with the use of Signals and Daemon Processes								

	1
Module – 1: Introduction, Unix files	No. of Hours
Unix Components/Architecture. Features of Unix. The UNIX Environment and UNIX Structure, Posix	
and Single Unix specification. General features of Unix commands/ command structure. Command	
arguments and options. Basic Unix commands such as echo, printf, ls, who, date, passwd, cal, Combining commands. Meaning of Internal and external commands. The type command: knowing the	
type of a command and locating it. The root login. Becoming the super user: su command.	9
Unix files: Naming files. Basic file types/categories. Organization of files. Hidden files. Standard	
directories. Parent-child relationship. The home directory and the HOME variable. Reaching required	
files- the PATH variable, manipulating the PATH, Relative and absolute pathnames. Directory	
commands – pwd, cd, mkdir, rmdir commands. The dot (.) and doubledots () notations to represent	
present and parent directories and their usage in relative pathnames. File related commands – cat, mv,	
rm, cp, wc and od commands.	
Text Book1: Chapter-1, 2, 3, 4, 5	
Module – 2: Shell programming	No. of Hours
File attributes and permissions: The ls command with options. Changing file permissions: the	
relative and absolute permissions changing methods. Recursively changing file permissions. Directory	
permissions. The shells interpretive cycle: Wild cards. Removing the special meanings of wild cards. Three	
standard files and redirection.	
Connecting commands: Pipe. Basic and Extended regular expressions. The grep, egrep. Typical	9
examples involving different regular expressions.	
Shell programming: Ordinary and environment variables. The. profile. Read and read-only	
commands. Command line arguments. exit and exit status of a command. Logical operators for	
conditional execution. The test command and its shortcut. The if, while, for and case control	
statements. The set and shift commands and handling positional parameters. The here(<<) document	
and trap command. Simple shell program examples.	
Text Book1: Chapter-6,8,13,14 Module – 3: File I/O	No of House
Unix Standardization and Implementations: Introduction, Unix Standardization, UNIX System	No. of Hours
Implementation.	
File I/O: Introduction, File Description, open, create, read, write, close, fcntl functions.	
Files and Dictionaries: mkdir and rmdir functions, reading dictionaries, chdir, fchdir and getcwd	
functions. Device Special files.	_
The Environment of a UNIX Process: Introduction, main function, Process Termination, Command-	9
Line Arguments, Environment List, Memory Layout of a C Program, Shared Libraries, Memory	
Allocation, Environment Variables, setjmp and longjmp Functions, getrlimit, setrlimit Functions.	
Text Book 2: 2,3,4,7.	
Module – 4: Process Control	No. of Hours
Introduction, Process Identifiers, fork, vfork, exit, wait, waitpid, wait3, wait4 Functions, Race	
Conditions, exec Functions.	

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Overview of IPC Methods, Pipes, popen, pclose Functions, Coprocesses, FIFOs, System VIPC,	9
Message Queues, Semaphores.	
Shared Memory, Client-Server Properties, Passing File Descriptors, An Open Server-Version1.	
Text Book2: Chapter 8, 15,17	
Module – 5: Signals and Daemon Processes	No. of Hours
Introduction, Signal Concepts, Signal Functions, SIGCLD Semantics, Kill and Raise functions, Alarm	
and Pause Functions, Signal Sets, sigprocmask Function, sig pending function, sigaction function,	
sigsetjmp and siglongjmp functions, sigsuspend function, abort function, system function, sleep,	
nanosleep and clock_nanosleepfunctions, sigqueue functions, job-control signals, signal names and numbers.	9
Daemon Processes: Introduction, Daemon Characteristics, Coding Rules, Error Logging, Client-	
Server Model.	
Text Book 2: Chapter 10, 13	

Course	Course Outcomes: At the end of the course, the students will be able to							
CO1	Demonstrate the basics of Unix concepts and commands.							
CO2	Demonstrate the UNIX file system.							
CO3	Apply commands to reflect changes in file system.							
CO4	Demonstrate IPC and process management.							
CO5	Develop an application/service over a Unix system.							

	Text Books									
Γ	1.	Sumitabha Das., Unix Concepts and Applications., 4 th Edition., Tata McGraw Hill								
	2.	W. Richard Stevens: Advanced Programming in the UNIX Environment, 2 nd Edition, Pearson Education, 2005								

Referen	Reference Text Books									
1.	Unix System Programming Using C++ - Terrence Chan, PHI, 1999.									
2.	M.G. Venkatesh Murthy: UNIX & Shell Programming, Pearson Education.									
3.	Richard Blum, Christine Brenham: Linux Command Line and Shell Scripting Bible, 2 nd Edition, Wiley, 2014.									

Web links and Video lectures (e-Resources)

- 1. https://www.youtube.com/watch?v=ffYUfAqEamY
- 2. https://www.youtube.com/watch?v=Q05NZiYFcD0
- 3. https://www.youtube.com/watch?v=8GdT53KDIyY
- 4. https://www.youtube.com/watch?app=desktop&v=3Pga3y7rCgo

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	1	-	-	-	3	1	-	-	1	2
CO2	2	2	-	-	-	2	1	-	-	2	2
CO3	1	1	-	-	-	1	2	-	-	2	1
CO4	1	1	-	-	-	1	2	-	-	1	1
CO5	1	1	-	-	-	1	2	-	-	1	1

Level 3 – High, Level 2 – Moderate, Level 1 -Low

SEMESTER-III						
OBJECT ORIENTED PROGRAMMING WITH C++						
	Category: ESC/ETC/PLC-III					
	(Common to CSE, CSD, CSE(IC))					
Course Code	:	B24IC362	CIE	:	50 Marks	
Teaching Hours L: T: P	:	2:0:2	SEE	:	50 Marks	
Total Hours	:	30(T) +15(P)	Total	:	100 Marks	
Credits	:	3	SEE Duration	:	3 Hrs	

	Course Objectives					
1.	To understand object-oriented programming using C++and Gain knowledge about the capability to store information together in an object.					
2.	To illustrate the capability of a class to rely upon another class and functions.					
3.	To Create and process data in files using file I/O functions					
4.	To understand the generic programming features of C++ including Exception handling					

Module – 1: An overview of C++:	No. of Hours
What is object-Oriented Programming? Introducing C++ Classes, The General Form of a C++	
Program.	
Classes and Objects: Classes, Friend Functions, Friend Classes, Inline Functions, Parameterized	6
Constructors, Static Class Members, When Constructors and Destructors are Executed, The Scope	
Resolution Operator, Passing Objects to functions, Returning Objects, Object Assignment	
Module - 2 Arrays, Pointers, References, and the Dynamic Allocation Operators:	No. of Hours
Arrays of Objects, Pointers to Objects, The Pointer, Pointers to derived types, Pointers to class	
members.	6
Functions Overloading, Copy Constructors: Functions Overloading, Overloading Constructor	
Functions. Copy Constructors, Default Function Arguments, Function Overloading and Ambiguity.	
Module – 3: Operator Overloading	No. of Hours
Creating a Member Operator Function, Operator Overloading Using a Friend Function, Overloading	
new and delete	
Inheritance: Base-Class Access Control, Inheritance and Protected Members, Inheriting Multiple	6
Base Classes, Constructors, Destructors and Inheritance, Granting Access, Virtual Base Classes	
Module – 4: Virtual Functions and Polymorphism	No. of Hours
Virtual Functions, The Virtual Attribute is Inherited, Virtual Functions are Hierarchical, Pure Virtual	
Functions, Using Virtual Functions, Early v/s Late Binding.	
Templates: Generic Functions, Applying Generic Functions, Generic Classes. The type name and	6
export Keywords. The Power of Templates	
Module – 5: Exception Handling	No. of Hours
Exception Handling Fundamentals, Handling Derived-Class Exceptions, Exception Handling	
Options, Applying Exception Handling.	
The C++ I/O System Basics: C++ Streams, The C++ Classes, Formatted I/O	6
File I/O: <fstream> and File Classes, Opening and Closing a File, Reading and Writing Text Files,</fstream>	
Detecting EOF.	

Course	Course Outcomes: At the end of the course, the students will be able to				
CO1	Illustrate the basic concepts of object-oriented programming.				
CO2	Design appropriate classes for the given real world scenario.				
CO3	Use the knowledge of inheritance for developing optimized solutions				
CO4	Apply the concepts of templates and exception handling for the given problem				
CO5	Use the concepts of input output streams for file operations				

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

LABORATORY

Practical Component of IPCC (10 Experiments)

Sl. No.	List of experiments
1.	Develop a C++ program to find the largest of three numbers
2.	Develop a C++ program to sort the elements in ascending and descending order.
3.	Develop a C++ program using classes to display student name, roll number, marks obtained in two subjects and total score of student
4.	Develop a C++ program for a bank empolyee to print name of the employee, account_no. & balance. Print invalid balance if amount<500, Display the same, also display the balance after withdraw and deposit.
5.	Develop a C++ program to demonstrate function overloading for the following prototypes. add(int a, int b) add(double a, double b)
6.	Develop a C++ program using Operator Overloading for overloading Unary minus operator.
7.	Develop a C++ program to implement Multiple inheritance for performing arithmetic operation of two numbers
8.	Develop a C++ program using Constructor in Derived classes to initialize alpha, beta and gamma and display corresponding values.
9.	Develop a C++ program to create a text file, check file created or not, if created it will write some text into the file and then read the text from the file.
10.	Develop a C++ program to write and read time in/from binary file using fstream
11.	Develop a function which throws a division by zero exception and catch it in catch block. Write a C++ program to demonstrate usage of try, catch and throw to handle exception.
12.	Develop a C++ program that handles array out of bounds exception using C++.

ſ	Text B	ooks
ſ	1.	Herbert schildt, The Complete Reference C++, 4 th edition, TMH, 2005

Refere	Reference Text Books						
1.	Balagurusamy E, Object Oriented Programming with C++, Tata McGraw Hill Education Pvt.Ltd., 6 th Edition 2016.						
2.	Bhave, "Object Oriented Programming With C++", Pearson Education, 2004.						
3.	A K Sharma, "Object Oriented Programming with C++", Pearson Education, 2014						

Web links and Video lectures (e-Resources)

- 1. 1. Basics of C++ https://www.youtube.com/watch?v=BClS40yzssA
- $2. \quad Functions \ of \ C++ \ \ https://www.youtube.com/watch?v=p8ehAjZWjPw$
- 3. https://www.w3schools.com/cpp/cpp_intro.asp
- 4. https://www.edx.org/course/introduction-to-c-3

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for 50 marks and scaled down to 20 marks.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

		Theory		
IA Test	Exam conducted for	Scaled down to	Average of best two tests	Total
IA-1	50	30		
IA-2	50	30	30	
IA-3	50	30		50/2=25
Two Assignments	2×10=20	10	10	
Two Quizzes	2×10=20	10	10	

	\mathbf{L}_{ℓ}	AB	
Continuous	Each experiments	Scaled down to 05	
performance and record	evaluated for 10 marks	marks	
writing			5+20=25
Internal Test + Viva	Exam conducted for 50	Scaled down to 20	
voce	marks	marks	

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	1	-	-	-	-	-	-	1	-
CO2	3	1	1	1	2	-	-	-	1	1	1
CO3	2	1	1	1	1	-	-	-	1	1	1
CO4	2	1	1	-	2	-	-	-	-	1	-
CO5	2	1	1	1	2	-	-	-	-	1	-

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-III						
EMBEDDED SYSTEMS						
		Category: ESC/ETC/PL	.C-III			
		(Common to CSE, C	SD)			
Course Code	:	B24CG363	CIE	:	50 Marks	
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks	
Total Hours	:	45(T)	Total	:	100 Marks	
Credits	:	3	SEE Duration	:	3 Hrs	

	Course Objectives				
1.	Introductory topics of Embedded System design				
2.	Characteristics & attributes of Embedded System				
3.	Introduction of Embedded System Software and Hardware development				
4.	Embedded Firmware Design Approach				
5.	RTOS based Embedded system design				

Introduction: Embedded Systems and general purpose computer systems, history, classifications, applications and purpose of embedded systems Chapter 1 – Text 1 Core of Embedded Systems: Microprocessors and microcontrollers, RISC and CISC controllers, Big endian and Little endian processors, Application specific ICs, Programmable logic devices, COTS, sensors and actuators, communication interface, embedded firmware, other system components, PCB and passive components Chapter 2 – Text 1 Module – 2: Characteristics and Quality Arrtributes Characteristics and quality attributes of embedded systems: Characteristics, Operational and nonoperational quality attributes, application specific embedded system - washing machine, domain specific – automotive Chapter 3 & 4 – Text 1 Module – 3: Hardware Software Co Design Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real-Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task	Module – 1:Introduction Of Embedded Systems	No. of Hours
Core of Embedded Systems: Microprocessors and microcontrollers, RISC and CISC controllers, Big endian and Little endian processors, Application specific ICs, Programmable logic devices, COTS, sensors and actuators, communication interface, embedded firmware, other system components, PCB and passive components Chapter 2 – Text 1 Module – 2: Characteristics and Quality Arrtributes No. of Hours		
endian and Little endian processors, Application specific ICs, Programmable logic devices, COTS, sensors and actuators, communication interface, embedded firmware, other system components, PCB and passive components Chapter 2 – Text 1 Module – 2 : Characteristics and Quality Arrtributes Characteristics and quality attributes of embedded systems: Characteristics, Operational and nonoperational quality attributes, application specific embedded system - washing machine, domain specific – automotive Chapter 3 & 4 – Text 1 Module – 3: Hardware Software Co Design Module – 3: Hardware Software Co Design Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task		
endian and Little endian processors, Application specific ICs, Programmable logic devices, COTS, sensors and actuators, communication interface, embedded firmware, other system components, PCB and passive components Chapter 2 – Text 1 Module – 2: Characteristics and Quality Arrtributes Characteristics and quality attributes of embedded systems: Characteristics, Operational and nonoperational quality attributes, application specific embedded system - washing machine, domain specific – automotive Chapter 3 & 4 – Text 1 Module – 3: Hardware Software Co Design Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task		9
Module – 2 : Characteristics and Quality Arrtributes Characteristics and quality attributes of embedded systems: Characteristics, Operational and nonoperational quality attributes, application specific embedded system - washing machine, domain specific – automotive Chapter 3 & 4 – Text 1 Module – 3: Hardware Software Co Design Module – 3: Hardware Software Co Design No. of Hours Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems No. of Hours Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task		
Module – 2 :Characteristics and Quality Arrtributes Characteristics and quality attributes of embedded systems: Characteristics, Operational and nonoperational quality attributes, application specific embedded system - washing machine, domain specific – automotive Chapter 3 & 4 – Text 1 Module – 3:Hardware Software Co Design Module – 3:Hardware Software Co Design No. of Hours Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems No. of Hours Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task		
Characteristics and quality attributes of embedded systems: Characteristics, Operational and nonoperational quality attributes, application specific embedded system - washing machine, domain specific – automotive Chapter 3 & 4 – Text 1 Module – 3:Hardware Software Co Design Module – S:Hardware Software Co Design No. of Hours Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems No. of Hours Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task	1 1	
nonoperational quality attributes, application specific embedded system - washing machine, domain specific - automotive Chapter 3 & 4 - Text 1 Module - 3:Hardware Software Co Design Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 - Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 - Text 1: 8.1, 8.2, 8.3, 8.4 Module - 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 - Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation - programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 - Text 1: 13.2, 13.3,13.4 Module - 5: Real- Time Operating Systems No. of Hours Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task		No. of Hours
Specific – automotive Chapter 3 & 4 – Text 1 Module – 3:Hardware Software Co Design Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems No. of Hours Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task		
Chapter 3 & 4 – Text 1 Module – 3:Hardware Software Co Design Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems No. of Hours Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task		0
Module – 3:Hardware Software Co Design Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems No. of Hours Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task		9
Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9	Chapter 3 & 4 – Text 1	
Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2 Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task	Module – 3:Hardware Software Co Design	No. of Hours
Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task	Hardware Software Co design and Program Modelling: Fundamental issues in Hardware Software	
Components, VLSI & Integrated Circuit Design, Electronic Design Automation Tools Chapter 8 – Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task	Co-design, Computational models in Embedded System Design Chapter 7 – Text 1: 7.1, 7.2	
Text 1: 8.1, 8.2, 8.3, 8.4 Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9	Embedded Hardware Design and Development: Analog Electronic Components, Digital Electronic	9
Module – 4: Embedded Firmware Design and Development Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task		
Embedded Firmware Design and Development: Embedded Firmware Design Approaches, Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9	Text 1: 8.1, 8.2, 8.3, 8.4	
Embedded Firmware Development Languages Chapter 9 – Text 1: 9.1, 9.2 Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9	Module – 4: Embedded Firmware Design and Development	No. of Hours
Embedded System Development Environments: Types of files generated on cross compilation (only explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9		
explanation – programming codes need not be dealt), disassemble/decompliler, Simulators, Emulators and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9		
and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4 Module – 5: Real-Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9		9
Module – 5: Real- Time Operating Systems Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9		
Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9	and Debugging Chapter 13 – Text 1: 13.2, 13.3,13.4	
Real-time Operating System(RTOS) based Embedded System Design: Operating System basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9	Module – 5: Real- Time Operating Systems	No. of Hours
Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task 9		
		9
Scheduling Chapter 10 – Text 1: 10.1 to 10.5	Scheduling Chapter 10 – Text 1: 10.1 to 10.5	

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	xplain characteristics of Embedded System design					
CO2	Acquire knowledge about basic concepts of circuit emulators, debugging and RTOS					
CO3	Analyse embedded system software and hardware requirements					
CO4	Develop programming skills in embedded systems for various applications.					
CO5	Design basic embedded system for real time applications					

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Text Bo	oks
1.	1. Shibu K V, "Introduction to Embedded Systems", 2 nd Edition, McGraw Hill Education

Reference Text Books					
1.	RaghunandanG.H, Microcontroller (ARM) and Embedded System, Cengage learning Publication,2019				
2.	The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd.,1st edition, 2005.				
3.	Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2 nd Edition, 2008.				

Web links and Video lectures (e-Resources)

- 1. NPTL Lectures: https://nptel.ac.in/courses/108102045 Embedded Systems, IIT Delhi, Prof. Santanu Chaudhary
- 2 http://www.digimat.in/nptel/courses/video/106105193/L01.html
- 3. http://www.digimat.in/nptel/courses/video/106105159/L01.html

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. Part-B contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	-	-	-	3	1	-	-	1	2
CO2	2	2	-	-	-	2	1	-	-	2	2
CO3	1	1	-	-	-	1	2	-	-	2	1
CO4	1	1	-	-	-	1	2	-	-	1	1
CO5	1	1	-	-	-	1	2	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-III							
WEB TECHNOLOGIES							
		Category: ESC/ETC/PLC	-III				
	(Common to CSE, AIML, CSE(IC), ISE)						
Course Code	:	B24AI364	CIE	:	50 Marks		
Teaching Hours L : T : P	:	3:0:0	SEE	:	50 Marks		
Total Hours	:	45(T)	Total	:	100 Marks		
Credits	:	3	SEE Duration	:	3 Hrs		

	Course Objectives							
1.	To orient students to Web Programming fundamental							
2.	To develop hands-on skills in building dynamic and interactive web applications using modern web development technologies and frameworks.							
3.	To enhance problem-solving abilities and encourage creativity and innovation in designing and implementing web applications							
4.	To Work collaboratively on web development projects to enhance teamwork, communication, and project management skills							

Module – 1: Website Basics, Html 5, Css 3, Web 2.0	No. of Hours
Web Essentials: Clients, Servers and Communication – The Internet – World wide web – HTTP	
Request Message – HTTP Response Message – Web Clients – Web Servers – HTML5 – Tables – Lists	
- Image - HTML5 control elements - Drag and Drop - Audio - Video controls - CSS3 - Inline,	9
embedded and external style sheets – Rule cascading – Inheritance – Backgrounds – Border Images –	
Colors – Shadows – Text – Transformations – Transitions – Animations. Bootstrap Framework.	
Module – 2: Client Side Programming	No. of Hours
Java Script: An introduction to JavaScript-JavaScript DOM Model-Exception Handling-Validation	
Built-in objects-Event Handling- DHTML with JavaScript- JSON introduction - Syntax - Function	9
Files.	
Module – 3: Server Side Programming	No. of Hours
Servlets: Java Servlet Architecture- Servlet Life Cycle- Form GET and POST actions- Session	9
Handling- Understanding Cookies- DATABASE CONNECTIVITY: JDBC.	9
Module – 4: PHP and XML	No. of Hours
An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions- Form	
Validation. XML: Basic XML- Document Type Definition- XML Schema, XML Parsers and	9
Validation, XSL.	
Module – 5: Introduction to Angular and Web Applications Frameworks	No. of Hours
Introduction to AngularJS, MVC Architecture, Understanding ng attributes, Expressions and data	
binding, Conditional Directives, Style Directives, Controllers, Filters, Forms, Routers, Modules,	9
Services; Web Applications Frameworks and Tools – Firebase- Docker- Node JS- React- DjangoUI &	9
UX.	

Cours	e Outcomes: At the end of the course, the students will be able to
CO1	Construct a basic website using HTML and Cascading Style Sheets
CO2	Build dynamic web page with validation using Java Script objects and by applying different event handling
	mechanisms.
CO3	Develop server side programs using Servlets and JSP.
CO4	Construct simple web pages in PHP and to represent data in XML format
CO5	Develop interactive web applications.

Textboo	oks
1.	Deitel and Deitel and Nieto, Internet and World Wide Web - How to Program, Prentice Hall, 5 th Edition, 2011.
2.	Jeffrey C and Jackson, Web Technologies A Computer Science Perspective, Pearson Education, 2011.
3.	Angular 6 for Enterprise-Ready Web Applications, Doguhan Uluca, 1st edition, Packt Publishing

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Referen	Reference Textbooks						
1.	Stephen Wynkoop and John Burke —Running a Perfect Websitell, QUE, 2 nd Edition,1999.						
2.	Chris Bates, Web Programming – Building Intranet Applications, 3 rd Edition, Wiley Publications, 2009						
3.	Gopalan N.P. and Akilandeswari J., —Web Technologyl, Prentice Hall of India, 2011.						
4.	Angular: Up and Running: Learning Angular, Step by Step, Shyam Seshadri, 1 st edition, O'Reilly						
5.	UttamK.Roy, —Web Technologies, Oxford University Press, 2011						

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A** is **Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	2	2	3	3	3	-	-	-	2	-	3
CO2	3	2	3	2	3	-	-	-	2	-	3
CO3	1	2	2	3	3	-	-	-	1	-	2
CO4	3	3	3	2	3	-	-	-	2	-	3
CO5	2	2	3	1	2	-	-	-	3	-	2

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-III						
EXPLORATORY DATA ANALYSIS						
		Category: AEC/SEC	-III			
Course Code	:	B24CS381	CIE	:	50 Marks	
Teaching Hours L : T : P		0:0:2	SEE	:	50 Marks	
Total Hours :		15(P)	Total	:	100 Marks	
Credits	:	1	SEE Duration	:	3 Hrs	

	Course Objectives			
1.	To Apply analysis techniques to datasets in Excel.			
2.	Learn how to use Pivot Tables and Pivot Charts to streamline your workflow in Excel.			
3.	Understand and Identify the principles of data analysis			
4.	Become adept at using Excel functions and techniques for analysis.			
5.	Build presentation ready dashboards in Excel.			

Sl. No	List of Experiments
1.	Getting Started with Excel: Creation of spread sheets, Insertion of rows and columns, Drag & Fill, use of
	Aggregate functions.
2.	Creating Excel Sheets: Create Excel sheets with Formula and Functions.
3.	Working with Data: Importing data, Data Entry & Manipulation, Sorting & Filtering.
4.	Working with Data: Data Validation, Pivot Tables & Pivot Charts.
5.	Data Analysis Process: Conditional Formatting, What-If Analysis, Data Tables, Charts & Graphs.
6.	Cleaning Data with Text Functions: use of UPPER and LOWER, TRIM function, Concatenate.
7.	Cleaning Data Containing Date and Time Values: use of DATEVALUE function, DATEADD and
	DATEDIF, TIMEVALUE functions.
8.	Conditional Formatting: formatting, parsing, and highlighting data in spreadsheets during data analysis.
9.	Working with Multiple Sheets: work with multiple sheets within a workbook is crucial for organizing and
	managing data, perform complex calculations and create comprehensive reports.
10.	Create worksheet with following fields: Empno, Ename, Basic Pay(BP), Travelling Allowance(TA),
	Dearness Allowance(DA), House Rent Allowance(HRA), Income Tax(IT), Provident Fund(PF), Net
	Pay(NP). Use appropriate formulas to calculate the above scenario. Analyse the data using appropriate chart
	and report the data.
11.	Create worksheet on Inventory Management: Sheet should contain Product code, Product name, Product
	type, MRP, Cost after % of discount, Date of purchase. Use appropriate formulas to calculate the above
	scenario. Analyse the data using appropriate chart and report the data.
12.	Create worksheet on Sales analysis of Merchandise Store: data consisting of Order ID, Customer ID,
	Gender, age, date of order, month, online platform, Category of product, size, quantity, amount, shipping city
	and other details. Use of formula to segregate different categories and perform a comparative study using
	pivot tables and different sort of charts.
13.	Generation of report & presentation using Auto filter & macro.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Course	Course Outcomes: At the end of the course, the students will be able to				
CO1	Use advanced functions and productivity tools to assist in developing worksheets.				
CO2	Manipulate data lists using Outline and PivotTables.				
CO3	Use Consolidation to summarise and report results from multiple worksheets.				
CO4	Apply Macros and Autofilter to solve the given real world scenario.				
CO5	Learn how to interpret and analyze data patterns using pivot tables, summaries, and charts.				

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

SEMESTER-III						
ETHICAL HACKING						
	Category: AEC/SEC-III					
		(Common to CSE, CS	SD)			
Course Code	:	B24CS382	CIE	:	50 Marks	
Teaching Hours L: T: P	Teaching Hours L : T : P : 1:0:0 SEE : 50 Marks				50 Marks	
Total Hours : 15(T) Total : 100 Marks				100 Marks		
Credits	:	1	SEE Duration	:	1 Hrs	

	Course Objectives					
1.	Understand the basics of ethical hacking, security principles, and legal responsibilities.					
2.	Understand hacker techniques and the ethical hacker's approach to countering attacks					
3.	Learn techniques to gather information about target systems, networks, and domains.					
4.	Learn the importance and methodology of vulnerability assessment and penetration testing					
5.	Understand enumeration techniques and perform system exploitation to gain unauthorized access					

Module – 1: Introduction to Ethical Hacking	No. of Hours
Ethical Hacking Basics (CIA triad, types of hackers)	
The Role of an Ethical Hacker	3
 Introduction to Ethical Hacking Tools 	3
Legal and Ethical Consideration	
Module – 2: Technical Foundations of Hacking	No. of Hours
The Attacker's Mindset	
Ethical Hacking Phases	2
Components of the Security Stack	3
 Vulnerabilities and Exploits Overview 	
Module – 3: Footprinting and Scanning	No. of Hours
Active v/s Passive Footprinting	
 Network Scanning Techniques (using Nmap, Zenmap, Netcat) 	3
 DNS and WHOIS Information Gathering 	3
Service and OS Fingerprinting	
Module – 4: Vulnerability Assessment and Penetration Testing (VAPT)	No. of Hours
 VAPT Phases (Planning, Discovery, Attack, Reporting) 	
 Vulnerability Scanning with Tools (Nessus, OpenVAS) 	2
 Penetration Testing Methodologies (Black-box, White-box, Gray-box) 	3
Report Writing and Risk Rating	
Module – 5: Enumeration and System Hacking	No. of Hours
• Enumeration and System Hacking Enumeration Techniques (NetBIOS, SNMP, LDAP, DNS)	
 Exploiting System Vulnerabilities (Metasploit, Password Cracking) 	3
 Denial of Service(DoS) and Distributed Denial of Service(DDoS) 	

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	Understand different ethical hacking techniques					
CO2	Discover vulnerabilities and loopholes in web servers and systems					
CO3	Apply ethical hacking knowledge to perform live attacks					
CO4	Prepare VAPT reports of the attacks					
CO5	Web Application Testing Competence: Identify and exploit web application vulnerabilities, and use tools to					
	test and secure web applications against common attacks.					

Text Bo	Text Books					
1.	Certified Ethical Hacker by Michael Gregg (Pearson IT Certification)					
2.	Hacking the Hacker by Roger Grimes (Wiley)					

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Referen	nce Text Books
1.	Ethical Hacking and Penetration Testing Guide by Rafay Baloch (CRC Press)
2.	Learning Nessus for Penetration Testing by Himanshu Kumar (Packt Publishing)
3.	Footprinting and Information Gathering – Methods of reconnaissance, scanning, and collecting
	information

Web links and Video lectures (e-Resources)

- 1. Video: Ethical Hacking Training Module 1
- 2. Video: Full Ethical Hacking Course Network Penetration Testing
- 3. Video: Nmap Tutorial | Introduction | Ethical Hacking
- 4. Video: Ethical Hacking Deep Dive: Metasploit, Nmap, and More
- 5. Video: Certified Ethical Hacker Tutorial | Ethical Hacking Tutorial

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks (Multiple Choice Questions), after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

SEMESTER-III					
APP DEVELOPMENT					
	Category: AEC/SEC-III				
(Common to CSE, CSD, ISE)					
Course Code	Course Code : B24CS383 CIE : 50 Marks				
Teaching Hours L: T: P	:	0:0:2	SEE	:	50 Marks
Total Hours : 15(P) Total : 100 Marks					
Credits	:	1	SEE Duration	:	3 Hrs

	Course Objectives		
1.	Know the components and structure of mobile application development frameworks like Android /windows		
	/ios.		
2.	Understand how to work with various mobile application development frameworks		
3.	Learn the basic and important design concepts and issues of development of mobile applications.		
4.	Understand the capabilities and limitations of mobile devices.		
5.	Write applications for the platforms used, simulate them, and test them on the mobile hardware where possible.		

Sl. No	List of Experiments
1.	Develop an application that uses Layout Managers.
2.	Develop an application that uses event listeners.
3.	Develop an application that uses Adapters, Toast.
4.	Develop an application that makes use of database.
5.	Develop an application that makes use of RSS Feed.
6.	Implement an application that implements Multi threading.
7.	Develop a native application that uses GPS location information.
8.	Implement an application that writes data to the SD card.
9.	Implement an application that creates an alert upon receiving a message.
10.	Develop a game application.

Course	Course Outcomes: At the end of the course, the students will be able to	
CO1	CO1 Install and configure Android application development tools.	
CO2	Design and develop user Interfaces for the Android platform.	
CO3	Apply Java programming concepts to Android application development.	
CO4	Familiar with technology and business trends impacting mobile applications.	
CO5	Competent with the characterization and architecture of mobile applications.	

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

SEMESTER-III					
KNOWLEDGE ENGINEERING					
		Category: AEC/S	EC-III		
(Common to CSE, CSD)					
Course Code : B24CG384 CIE : 50 Marks					
Teaching Hours L: T: P	:	1:0:0	SEE	:	50 Marks
Total Hours : 15(T) Total : 100 Marks					
Credits	:	1	SEE Duration	:	1 Hrs

	Course Objectives		
1.	To understand the basics of Knowledge Engineering.		
2.	To discuss methodologies and modeling for Agent Design and Development.		
3.	To design and develop ontologies		
4.	To apply reasoning with ontologies and rules.		
5.	To understand learning and rule learning		

Module – 1: Reasoning under uncertainty	No. of Hours
Introduction – Abductive reasoning – Probabilistic reasoning: Enumerative Probabilities – Subjective Bayesian view – Belief Functions – Baconian Probability – Fuzzy Probability – Uncertainty methods -	3
Evidence-based reasoning – Intelligent Agent – Mixed-Initiative Reasoning – Knowledge Engineering	3
Module – 2: Methodology and Modeling	
Conventional Design and Development – Development tools and Reusable Ontologies – Agent Design and Development using Learning Technology – Problem Solving through Analysis and Synthesis – Inquiry-driven Analysis and Synthesis – Evidence-based Assessment – Believability Assessment – Drill-Down Analysis, Assumption-based Reasoning, and What-If Scenarios.	3
Module – 3: Design and Development	No. of Hours
Concepts and Instances – Generalization Hierarchies – Object Features – Defining Features – Representation – Transitivity – Inheritance – Concepts as Feature Values – Ontology Matching. Design and Development Methodologies – Steps in Ontology Development – Domain Understanding and Concept Elicitation – Modelling-based Ontology Specification.	3
Module – 4: Reasoning with Ontologies and Rules	No. of Hours
Production System Architecture – Complex Ontology-based Concepts – Reduction and Synthesis rules and the Inference Engine – Evidence-based hypothesis analysis – Rule and Ontology Matching – Partially Learned Knowledge – Reasoning with Partially Learned Knowledge.	3
Module – 5: Learning and Rule Learning	No. of Hours
Machine Learning – Concepts – Generalization and Specialization Rules – Types – Formal definition of Generalization. Modelling, Learning and Problem Solving – Rule learning and Refinement – Overview – Rule Generation and Analysis – Hypothesis Learning.	3

Course	Course Outcomes: At the end of the course, the students will be able to		
CO1	CO1 Understand the basics of Knowledge Engineering.		
CO2	Apply methodologies and modeling for Agent Design and Development.		
CO3	Design and develop ontologies.		
CO4	CO4 Analyze the reasoning with ontologies and rules.		
CO5	Understand learning and rule learning.		

Text Bo	Text Books		
1.	Gheorghe Tecuci, DorinMarcu, Mihai Boicu, David A. Schum, Knowledge Engineering Building Cognitive		
	Assistants for Evidence-based Reasoning, Cambridge University Press, 1 st Edition, 2016. (Unit 1 – Chapter 1		
	/ Unit 2 – Chapter 3,4 / Unit 3 – Chapter 5, 6 / Unit 4 - 7, Unit 5 – Chapter 8, 9)		

Referen	Reference Text Books		
1.	Ronald J. Brachman, Hector J. Levesque: Knowledge Representation and Reasoning, Morgan Kaufmann,		
	2004.		
2.	Ela Kumar, Knowledge Engineering, I K International Publisher House, 2018.		
3.	John F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations,		
	Brooks/Cole, Thomson Learning, 2000		

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Ī	4.	King, Knowledge Management and Organizational Learning, Springer, 2009.
ſ	5.	Jay Liebowitz, Knowledge Management Learning from Knowledge Engineering, 1st Edition, 2001.

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks (Multiple Choice Examination), after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	1	1	1	1	-	-	1	2	1
CO2	3	2	3	2	2	-	-	-	2	1	2
CO3	2	2	3	2	2	-	-	-	3	2	2
CO4	2	2	3	1	1	-	-	-	2	2	2
CO5	2	2	2	1	1	-	-	-	2	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

IV - Semester Syllabus

SEMESTER-IV								
DISCRETE MATHEMATICS AND GRAPH THEORY								
	Category: PCC							
		(Common to CSE, ISE,	CSD)					
Course Code	:	B24MC401	CIE	:	50 Marks			
Teaching Hours L: T: P	Teaching Hours L : T : P : 3:0:0 SEE : 50 Marks							
Total Hours : 45(T) Total : 100 Marks								
Credits	:	3	SEE Duration	:	3 Hrs			

	Course Objectives							
1.	1. To help students understand discrete and continuous mathematical structures							
2.	2. Analyzing and solving combinatorial problems using logical reasoning and creativity							
3.	3. To impart basics of relations and functions							
4.	4. Analyze and solve problems involving graph connectivity							
5.	5. Analyze and solve problems involving tree structures							

Module-1: Mathematical Logic	No. of Hours				
Statements and notations, Connectives, Truth Tables, Tautology, Equivalence implication, Normal	9				
forms, Quantifiers, Universal quantifiers. Rules of inference, Proof of contradiction.					
Module-2: Relations And Functions					
Relations: Properties of Binary Relations, Equivalence Relation, Transitive closure, Compatibility and					
Partial ordering relations, Lattices, Hasse diagram.	9				
Functions: inverse Function, Composition of functions, Recursive Functions.					
Module-3: Elementary Combinatorics	No. of Hours				
Basis of counting, Combinations & Permutations, With repetitions, Constrained repetitions, Binomial					
Coefficients, Binomial Multinomial theorems, The principles of Inclusion – Exclusion, Pigeon- hole	9				
principles and its applications.					
Module-4: Fundamental Concepts of Graph	No. of Hours				
Basic definitions of graphs and multigraphs adjacency matrices, isomorphism, decompositions,					
independent sets, graph complements, vertex coloring, chromatic number, important graph like cubes	9				
and the Petersen graph .Paths, cycles. Vertex degrees and counting large bipartite sub graphs.					
Directed graphs: weak connectivity, strong components, Induction and other fundamental proof					
techniques.					
Module-5: Trees and Connectivity	No. of Hours				
Basics: equivalent characterizations of trees, forests ,Spanning trees, Distance and center,					
Optimization, prims, Kruskal's Theorem and Dijkstra's Theorem, Connectivity, Vertex cuts, separating	9				
sets, bonds vertex and edge connectivity, Menger's Theorem, undirected vertex and edge versions.					

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Apply concepts of logical reasoning and mathematical proof techniques in proving theorems and statements						
CO2	Apply basic counting techniques to solve the combinatorial problems						
CO3	Apply the basic concepts of relations, functions and partially order sets for computer representations						
CO4	Use the basic concepts of graph theory and some related theoretical problems						
CO5	Analyze and solve problems involving tree structures						

Text Books							
1.	Ralph P. Grimaldi: "Discrete and Combinatorial Mathematics", 5 th Edition, Pearson Education. 2004.						
2.	West, Introduction to Graph Theory, 2 nd edition., Prentice Hall						

Referen	Reference Text Books								
1.	Ralph P. Grimaldi, B V Ramana: "Discrete Mathematical Structures an Applied Introduction", 5 th Edition,								
	Pearson Education, 2004.								
2.	Basavaraj S Anami and Venakanna S Madalli: "Discrete Mathematics - A Concept-based approach",								

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

	U	Universities Press, 2016
3.	K	Kenneth H. Rosen: "Discrete Mathematics and its Applications", 6th Edition, McGraw Hill, 2007.

Web links and Video lectures (e-Resources)

- 1. https://nptel.ac.in/courses/12286025
- 2. VTU EDUSAT PROGRAMME 20
- 3. http://www.class-central.com/subject/math(MOOCs)

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	1	-	-	-	-	1	-	2
CO2	3	3	2	1	-	-	-	-	1	-	2
CO3	3	3	2	1	-	-	-	-	1	-	2
CO4	3	3	2	1	-	-	-	-	1	-	2
CO5	3	3	2	1	-	-	-	-	1	-	2

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-IV							
DATABASE MANAGEMENT SYSTEMS							
		Category: PC	C				
	(Co	ommon to CSE, ISE, AIMI	L, CSE(IC), CSD)				
Course Code	:	B24CS402	CIE	:	50 Marks		
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks		
Total Hours : 45(T) Total : 100 Marks							
Credits	:	3	SEE Duration	:	3 Hrs		

	Course Objectives
1.	To introduce the fundamental concepts of database systems and data models, particularly the relational model.
2.	To understand and apply relational algebra and relational calculus for query formulation.
3.	To develop SQL queries for data definition, manipulation, and control.
4.	To understand the concepts of normalization and apply it to improve database design and eliminate anomalies.
5.	To gain knowledge of transaction processing, concurrency control, and recovery techniques to ensure data integrity and consistency.

Module – 1: Introduction to Databases	No. of Hours
Introduction, Characteristics of database approach, Advantages of using the DBMS approach, History	
of database applications.	
Overview of Database Languages and Architectures: Data Models, Schemas, and Instances. Three	
schema architecture and data independence, database languages, and interfaces, The Database System	9
environment.	
Conceptual Data Modelling using Entities and Relationships: Entity types, Entity sets, attributes	
and structural constraints, Weak entity types, ER diagrams.	
Module – 2: Relational Model	No. of Hours
Relational Model Concepts, Relational Model Constraints and relational database schemas, Update	
operations, transactions, and dealing with constraint violations.	
Relational Algebra: Unary and Binary relational operations, additional relational operations	9
(aggregate, grouping) Examples of Queries in relational algebra.	
Mapping Conceptual Design into a Logical Design: Relational Database Design using ER-to-	
Relational mapping.	
Module – 3: Structured Query Language (SQL)	No. of Hours
Overview of SQL, Data Definition Commands, Data Manipulation commands, Integrity constraints -	
key constraints, Domain Constraints, Referential integrity constraints(RIC), Entity integrity	
constraints(EIC), check constraints, Data Control commands, Transaction Control Commands,	9
aggregate function - group by, having clause	
SQL-Advance Quaries: Views in SQL, Nested and co-related queries, Exists & Not Exists, joins &	
outer joins, specififying constratints as assertions and action Triggers.	
Module – 4: Relational & Normalization	No. of Hours
Database Design: Pitfalls in Relational-Database designs, Concept of normalization, Function	
Dependencies, Normal Forms- 1NF, 2NF, 3NF, multivalued dependency and 4NF, Join dependencies	9
and 5NF, BCNF	
Module – 5: Transaction Management and Recovery	No. of Hours
Transaction Concept, ACID properties, Transaction States, Implementation of atomicity and durability,	
Concurrent Executions, Serializability, Concurrency Control Protocols: Lock-based, Timestamp based,	9
Validation Based, Deadlock Handling, Recovery System: Failure classification, Log based recovery,	
Shadow Paging, ARIES recovery algorithm.	

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	Design entity relationship for the given scenario.					
CO2	Design the relational model and mapping conceptual design in to a logical design.					
CO3	Apply various structured Query Language (SQL) statements for database manipulation.					

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

CO4	Analyze various normalization forms for the given application.
CO5	Understand the concepts of transaction management and recovery mechanisms.

Text Books						
1.	Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7 th Edition, 2017, Pearson.					
2.	Database management systems, Ramakrishnan, and Gehrke, 3 rd Edition, 2014, McGraw Hill					
3.	Elmasri and Navathe, —Fundamentals of Database Systems, 7 th Edition, Pearson education, 2016.					

Referenc	e Text Books
1.	Abraham Silberschatz, Henry F. Korth and S. Sudarshan's Database System Concepts 6 th Edition Tata
	Mcgraw Hill Education Private Limited
2.	G. K. Gupta —Database Management Systems, 3 rd Edition, McGraw – Hill, 2018
3.	Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press, 2012

Web links and Video lectures (e-Resources)	
1. https://www.youtube.com/watch?v=3EJlovevfcA	
2. https://www.youtube.com/watch?v=9TwMRs3qTcU	
3. https://www.voutube.com/watch?v=ZWl0Xow304I	

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

РОСО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	1	_	_	-	3	1	_	_	1	2
CO2	2	2	-	-	-	2	1	-	-	2	2
CO3	1	1	-	-	-	1	2	-	-	2	1
CO4	1	1	-	-	-	1	2	-	-	1	1
CO5	1	1	-	-	-	1	2	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-IV						
MICROCONTROLLERS						
		Category: IPCC				
		(Common to CSE, CS	SD)			
Course Code	:	B24CS403	CIE	:	50 Marks	
Teaching Hours L : T : P	:	3:0:2	SEE	:	50 Marks	
Total Hours	:	45(T)+15(P)	Total	:	100 Marks	
Credits	:	4	SEE Duration	:	3 Hrs	

	Course Objectives
1.	Understand the fundamentals of ARM-based systems and basic architecture of CISC and RISC.
2.	Familiarize with ARM programming modules along with registers, CPSR and Flags.
3.	Develop ALP using various instructions to program the ARM controller.
4.	Understand the Exceptions and Interrupt handling mechanism in Microcontrollers.
5.	Discuss the ARM Firmware packages and Cache memory polices.

Module – 1: ARM Embedded Systems	No. of Hours
The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded	
System Software.	
ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions,	9
Interrupts, and the Vector Table, Core Extensions	
Textbook1:Chapter1-1.1to1.4,Chapter2-2.1to2.5 RBT: L1, L2, L3	
Module – 2: Introduction to the ARM Instruction Set	No. of Hours
Data Processing Instructions, Branch Instructions, Software Interrupt Instructions, Program Status	
Register Instructions, Coprocessor Instructions, Loading Constants.	9
Textbook1:Chapter3-3.1to3.6 RBT: L1, L2, L3	
Module − 3: C Compilers and Optimization	No. of Hours
Basic C Data Types, C Looping Structures, Register Allocation, Function Calls, Pointer Aliasing,	
Portability Issues.	9
Textbook1:Chapter5.1to5.7and5.13 RBT: L1, L2, L3	
Module – 4: Exception and Interrupt Handling	No. of Hours
Exception handling, ARM processor exceptions and modes, vector table, exception priorities, link	
register offsets, interrupts, assigning interrupts, interrupt latency, IRQ and FIQ exceptions, basic	
interrupt stack design and implementation.	9
Firmware: Firmware and bootloader, ARM firmware suite, Red Hat redboot, Example: sandstone,	9
sandstone directory layout, sandstone code structure.	
Textbook1:Chapter9.1and9.2,Chapter10 RBT: L1, L2, L3	
	No. of Hours
Textbook1:Chapter9.1and9.2,Chapter10 RBT: L1, L2, L3	No. of Hours
Textbook1:Chapter9.1and9.2,Chapter10 RBT: L1, L2, L3 Module – 5: CACHES	No. of Hours
Textbook1:Chapter9.1and9.2,Chapter10 RBT: L1, L2, L3 Module – 5: CACHES The Memory Hierarchy and Cache Memory, Caches and Memory Management Units: CACHE Architecture: Basic Architecture of a Cache Memory, Basic Operation of a Cache Controller, The Relationship between Cache and Main Memory, Set Associativity, Write Buffers, Measuring Cache	
Textbook1:Chapter9.1and9.2,Chapter10 RBT: L1, L2, L3 Module – 5: CACHES The Memory Hierarchy and Cache Memory, Caches and Memory Management Units: CACHE Architecture: Basic Architecture of a Cache Memory, Basic Operation of a Cache Controller, The	No. of Hours
Textbook1:Chapter9.1and9.2,Chapter10 RBT: L1, L2, L3 Module – 5: CACHES The Memory Hierarchy and Cache Memory, Caches and Memory Management Units: CACHE Architecture: Basic Architecture of a Cache Memory, Basic Operation of a Cache Controller, The Relationship between Cache and Main Memory, Set Associativity, Write Buffers, Measuring Cache	

Course	Outcomes: At the end of the course, the students will be able to
CO1	Explain the ARM Architectural features and Instructions.
CO2	Develop programs using ARM instruction set for an ARM Microcontroller.
CO3	Explain C-Compiler Optimizations and portability issues in ARM Microcontroller.
CO4	Apply the concepts of Exceptions and Interrupt handling mechanisms in developing applications.
CO5	Demonstrate the role of Cache management and Firmware in Microcontrollers.

Text Bo	oks:
1.	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developer's guide, Elsevier, Morgan
	Kaufman publishers, 2008.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Reference Text Books					
1.	Raghunandan.G.H, Microcontroller (ARM)and Embedded System, Cengage learning Publication, 2019.				
2.	Insider's Guidetothe ARM7 based microcontrollers, HitexLtd., 1 st edition, 2005				

Web links and Video lectures (e-Resources):

1. Activity Based Learning (Suggested Activities in Class)/ Practical Based Learning Assign the group task to demonstrate the Installation and working of Keil Software.

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for 50 marks and scaled down to 20 marks.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

Theory							
IA Test	Exam conducted	Scaled down to	Average of best	Total			
	for		two tests				
IA-1	50	30					
IA-2	50	30	30				
IA-3	50	30		50/2=25			
Two Assignments	2×10=20	10	10				
Two Quizzes	2×10=20	10	10				

	LAB						
Continuous performance and record writing	Each experiments evaluated for 10 marks	Scaled down to 05 marks	5+20=25				
Internal Test + Viva voce	Exam conducted for 50 marks	Scaled down to 20 marks					

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.
- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

LABORATORY

Practical Component of IPCC (12 Experiments)

Sl. No	Name of the experiment
1.	Using Keil software, observe the various Registers, Dump, CPSR, with a simple Assembly Language
	Programs (ALP).
2.	Develop and simulate ARM ALP for Data Transfer, Arithmetic and Logical operations (Demonstrate with the
	help of a suitable program).
3.	Develop an ALP to multiply two16-bitbinarynumbers.
4.	Develop an ALP to find the sumoffirst10integernumbers.
5.	Develop an ALP to find the largest/smallest number in an array of 32numbers.
6.	Develop an ALP to count the number of ones and zeros in two consecutive
	Memory locations.
7.	Simulate a programin C for ARM microcontroller using KEIL to sort the numbersinascending/descending
	order using bubblesort.
8.	Simulate a program in C for ARM microcontroller to find factorial of a number.
9.	Simulate a program in C for ARM microcontroller to demonstrate case conversion of characters from upper to
	lower case and lower to uppercase.
10.	Demonstrate enabling and disabling of Interrupts in ARM.
11.	Demonstrate the handling of divide by zero, Invalid Operation and Overflow exceptions in ARM.

	1				1		1				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	-	-	-	3	1	-	-	1	2
CO2	2	2	-	-	-	2	1	-	-	2	2
CO3	1	1	-	-	-	1	2	-	-	2	1
CO4	1	1	-	-	-	1	2	-	-	1	1
CO5	1	1	-	-	-	1	2	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-IV							
DESIGN AND ANALYSIS OF ALGORITHMS							
		Category	: IPCC				
	(Common to CSE, ISE, AIML, CSE(IC), CSD)						
Course Code	:	B24CS404	CIE	:	50 Marks		
Teaching Hours L: T: P	:	3:0:2	SEE	:	50 Marks		
Total Hours : 45(T)+15(P) Total : 100 Marks							
Credits	:	4	SEE Duration	:	3 Hrs		

	Course Objectives				
1.	To learn the methods for analyzing algorithms and evaluating their performance.				
2.	To demonstrate the efficiency of algorithms using asymptotic notations.				
3.	To solve problems using various algorithm design methods, including brute force, greedy, divide and conquer,				
	decrease and conquer, transform and conquer, dynamic programming, backtracking, and branch and bound.				
4.	To learn the concepts of P and NP complexity classes.				
5.	To apply algorithmic techniques in real-world problem solving and enhance logical and analytical thinking				

Module – 1: INTRODUCTION	No. of Hours
What is an Algorithm?, Fundamentals of Algorithmic Problem Solving. FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY: Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non recursive Algorithms, Mathematical Analysis of Recursive Algorithms.	9
BRUTE FORCE APPROACHES: Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching.	
Module - 2 : DECREASE-AND-CONQUER	No. of Hours
BRUTE FORCE APPROACHES: Exhaustive Search (Travelling Salesman probem and Knapsack Problem). DECREASE-AND-CONQUER: Insertion Sort, Topological Sorting. DIVIDE AND CONQUER: Merge Sort, Quick Sort, Binary Tree Traversals, Multiplication of Large Integers and Strassen's Matrix Multiplication	9
Module – 3: TRANSFORM-AND-CONQUER	No. of Hours
Balanced Search Trees, Heaps and Heapsort. SPACE-TIME TRADEOFFS: Sorting by Counting: Comparison counting sort, Input Enhancement in String Matching: Horspool's Algorithm	9
Module – 4: DYNAMIC PROGRAMMING	No. of Hours
Three basic examples, The Knapsack Problem and Memory Functions, Warshall's and Floyd's Algorithms. THE GREEDY METHOD: Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm, Huffman Trees and Codes	9
Module – 5: LIMITATIONS OF ALGORITHMIC POWER	No. of Hours
LIMITATIONS OF ALGORITHMIC POWER: Decision Trees, P, NP, and NP-Complete Problems. COPING WITH LIMITATIONS OF ALGORITHMIC POWER: Backtracking (n-Queens problem, Subset-sum problem), Branch-and-Bound (Knapsack problem), Approximation algorithms for NP-Hard problems (Knapsack problem).	9

Course	Course Outcomes: At the end of the course, the students will be able to				
CO1	Apply asymptotic notational method to analyze the performance of the algorithms in terms of time complexity.				
CO2	Demonstrate divide & conquer approaches and decrease & conquer approaches to solve computational problems.				
CO3	Make use of transform & conquer and dynamic programming design approaches to solve the given real world or complex computational problems				
CO4	Apply greedy and input enhancement methods to solve graph & string based computational problems.				
CO5	Analyse various classes (P,NP and NP Complete) of problems				

Text Books							
1.	Introduction to the Design and Analysis of Algorithms, By Anany Levitin, 3 rd Edition (Indian), 2017,						
	Pearson.						

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Referen	ce Text Books
1.	Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran, 2 nd Edition, 2014, Universities
	Pres
2.	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3 rd
	Edition, PHI.
3.	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education)

Web links and Video lectures (e-Resources)

- 1. https://www.youtube.com/watch?v=EolP-WNP-
- Zc&pp=ygUQI2J0ZWNoZGFhc3ViamVjdA%3D%3D&themeRefresh=1
- 2. https://www.youtube.com/watch?v=NqKkxQamroo
- 3. https://www.youtube.com/playlist?list=PLxCzCOWd7aiHcmS4i14bI0VrMbZTUvlTa

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

Theory							
IA Test	Exam conducted	Scaled down to	Average of best	Total			
	for		two tests				
IA-1	50	30					
IA-2	50	30	30				
IA-3	50	30		50/2=25			
Two Assignments	2×10=20	10	10	-			
Two Quizzes	2×10=20	10	10				

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Continuous performance and record writing	Each experiments evaluated for 10 marks	Scaled down to 05 marks	5+20=25
Internal Test + Viva	Exam conducted for 50 marks	Scaled down to 20 marks	

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.
- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

LABORATORY

Practical Component of IPCC (12 Experiments)

Sl. No	Name of the experiments
1.	Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given connected
	undirected graph using Kruskal's algorithm.
2.	Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given connected
	undirected graph using Prim's algorithm
3.	a. Design and implement C/C++ Program to solve All-Pairs Shortest Paths problem using Floyd's
	algorithm. b. Design and implement C/C++ Program to find the transitive closure using Warshal's
	algorithm.
4.	Design and implement C/C++ Program to find shortest paths from a given vertex in a weighted connected
	graph to other vertices using Dijkstra's algorithm
5.	Design and implement C/C++ Program to obtain the Topological ordering of vertices in a given digraph
6.	Design and implement C/C++ Program to solve 0/1 Knapsack problem using Dynamic Programming
	method.
7.	Design and implement C/C++ Program to solve discrete Knapsack and continuous Knapsack problems
	using greedy approximation method.
8.	Design and implement C/C++ Program to find a subset of a given set S = {sl, s2,,sn} of n positive
	integers whose sum is equal to a given positive integer d.
9.	Design and implement C/C++ Program to sort a given set of n integer elements using Selection Sort
	method and compute its time complexity.
10.	Design and implement C/C++ Program to sort a given set of n integer elements using Quick Sort method

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

		and compute its time complexity
11	l.	Design and implement C/C++ Program to sort a given set of n integer elements using Merge Sort method
		and compute its time complexity.
12	2.	Design and implement C/C++ Program for N Queen's problem using Backtracking.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	-	2	1	-	-	1	-	1	2
CO2	2	2	-	2	1	-	-	1	-	2	2
CO3	1	1	-	2	1	-	-	-	-	2	1
CO4	1	1	-	2	1	-	-	-	-	1	1
CO5	1	1	-	2	1	-	-	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-IV										
DATABASE MANAGEMENT SYSTEMS LAB										
		Category: PCC								
		(Common to CSE, ISE, AIML	, CSE(IC), CSD)							
Course Code	:	B24CS405L	CIE	:	50 Marks					
Teaching Hours L: T: P	:	0:0:2	SEE	:	50 Marks					
Total hours	Total hours : 15(P) Total : 100 Marks									
Credits	:	1	SEE Duration	:	3 Hrs					

	Course Objectives						
1.	To Provide a strong foundation in database concepts, technology, and practice.						
2.	To Practice SQL programming through a variety of database problems						
3.	3. To Understand the relational database design principles.						
4.	To Demonstrate the use of concurrency and transactions in database.						
5.	To Design and build database applications for real world problems.						

Sl. No	List of Experiments
	PART-A
	Implementation of DDL commands of SQL with suitable examples
1.	• Create
	• Alter
	• Drop
	Truncate
	Rename
2.	Implementation of DML commands of SQL with suitable examples
۷.	• Insert
	Update
	• Delete
	• Select
3.	Implementation of different types of function with suitable examples
	Aggregate Function
	Using Parentheses
	Column Aliases
	Literal Character Strings
	Duplicate Row
	Implementation of different types of operators in SQL
4.	Arithmetic Operators
	Concatenation Operator
	• Comparison Operator (=,>,>=,<,<=,<>)
	Other Comparison Operator (BETWEEN, IN, LIKE, IS NULL)
	Logical Operator (AND, OR, NOT)
-	Implementation of different types of Joins
5.	• Inner Join
	Outer Join
	i. Left outer join ii. Right outer join
	iii. Full outer Join
	Natural Join
-	Study and Implementation of
6.	

	Group By & having clause
	Order by clause
	Sorting in Descending & Ascending order
	Softing in Descending & Ascending order
7.	Study & Implementation of different types of constraints.
	Primary Key & Foreign Key Constraints
	NOT NULL Constraints
	Default 1 Constraints
	• Check constraints
	 Domain Constraints Entity Integrity Constraints
	Referential Integrity Constraints
	Referential integrity constraints
	PART-B
	Consider the following schema for a Library Database:
8.	
	BOOK Book id, Title, Publisher Name, Pub Year)
	BOOK_AUTHORS(<u>Book_id</u> , Author_Name) PUBLISHER(Name, Address, Phone)
	BOOK_COPIES(Book_id,Programme_id,No-of_Copies)
	BOOK_LENDING(Book_id,Programme_id,Card_No,Date_Out, Due_Date)
	LIBRARY PROGRAMME(Programme id, Programme Name, Address)
	Write SQL queries to
	1. Retrieve details of all books in the library-id, title, name of publisher, authors, number of copies in each
	Programme, etc.
	 Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation
	3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.
	4. Partition the BOOK table base don year of publication .Demonstrate its working with a simple query.
	5. Create a view of all books and its number of copies that are currently available in the Library.
	Consider the following schema for Order Database:
0	CALEGMAN(C.L., '1) A. C'. C. '.'.
9.	SALESMAN(<u>Salesman_id</u> , Name, City, Commission) CUSTOMER(<u>Customer_id</u> , Cust_Name, City, Grade, Salesman_id)
	ORDERS(Ord No,Purchase Amt,Ord Date,Customer id,Salesman id)
	Write SQL queries to
	1. Count the customers with grades above Bangalore's average.
	2. Find the name and numbers of all salesman who had more than one customer.
	3. List all the salesman and indicate those who have and don't have customers in their cities (Use UNION
	operation.)
	4. Create a view that finds the salesman who has the customer with the highest order of a day
	5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be
	deleted. Consider the schema for Movie Database:
	Constact the schema for Movie Database:
10.	ACTOR(Act id, Act Name, Act Gender)
	DIRECTOR(<u>Dir_id</u> , Dir_Name, Dir_Phone) MOVIES(<u>Mov_id</u> ,Mov_Title,Mov_Year,Mov_Lang,
	Dir_id) MOVIE_CAST(<u>Act_id</u> , <u>Mov_id</u> , Role)
	RATING(<u>Mov_id</u> ,Rev_Stars)
	Write SOL queries to
	Write SQL queries to
	1. List the titles of all movies directed by,,Hitchcock".

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

- 2. Find the movie names where one or more actors acted in two or more movies.
- 3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).
- 4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.
- 5. Update rating of all movies directed b 'Steven Spielber'to 5.

Cours	Course Outcomes: At the end of the course, the students will be able to					
CO1	Create, Update and query on the database.					
CO2	Demonstrate the working of different concepts of DBMS					
CO3	Implement SQL commands for database schema creation and modification.					
CO4	Apply Primary and Foreign Key constraints to enforce entity integrity and referential integrity					
CO5	Explain the purpose and functionality of different types of joins in relational databases					

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	3	3	3	2	-	-	-	-	-	1
CO2	3	3	3	3	2	-	-	-	-	-	1
CO3	3	3	3	3	2	-	-	-	-	-	1
CO4	3	3	3	3	2	-	-	-	-	-	1
CO5	3	3	3	3	2	-	-	-	-	-	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low

SEMESTER-IV									
PROGRAMMING IN JAVA									
		Category: ESC/ETC/PL							
		(Common to CSE, CS	D)						
Course Code	Course Code : B24CS461 CIE : 50 Marks								
Teaching Hours L: T: P	Teaching Hours L : T : P : 2:0:2 SEE : 50 Marks								
Total Hours : 30(T)+15(P) Total : 100 Marks									
Credits	:	3	SEE Duration	:	3 Hrs				

	Course Objectives							
1.	To learn primitive constructs JAVA programming language.							
2.	To introduce the fundamentals of object-oriented programming concepts using Java, including classes, objects,							
	inheritance, and polymorphism.							
3.	To develop the ability to write reusable and maintainable code using key OOP principles like encapsulation and							
	abstraction.							
4.	To familiarize students with Java syntax, control structures, and exception handling mechanisms.							
5.	To provide knowledge of multithreading and file handling to build efficient and robust Java programs.							

Module – 1: An Overview of Java	No. of Hours
Object-Oriented Programming (Two Paradigms, Abstraction, The Three OOP Principles), Using Blocks of Code, Lexical Issues (Whitespace, Identifiers, Literals, Comments, Separators, The Java Keywords). Data Types, Variables, and Arrays: The Primitive Types (Integers, Floating-Point Types, Characters, Booleans), Variables, Type Conversion and Casting, Automatic Type Promotion in Expressions, Arrays, Introducing Type Inference with Local Variables. Operators: Arithmetic Operators, Relational Operators, Boolean Logical Operators, The Assignment Operator, The? Operator, Operator Precedence, Using Parentheses. Control Statements: Java's Selection Statements (if, The Traditional switch), Iteration Statements (while, do-while, for, The For-Each Version of the for Loop, Local Variable Type Inference in a for Loop, Nested Loops), Jump Statements (Using break, Using continue, return). Chapter 2, 3, 4, 5	6
Module – 2: Introducing Classes	No. of Hours
Class Fundamentals, Declaring Objects, Assigning Object Reference Variables, Introducing Methods, Constructors, The this Keyword, Garbage Collection. Methods and Classes: Overloading Methods, Objects as Parameters, Argument Passing, Returning Objects, Recursion, Access Control, Understanding static, Introducing final, Introducing Nested and Inner Classes. Chapter 6, 7	6
Module – 3: Inheritance	No. of Hours
Inheritance Basics, Using super, Creating a Multilevel Hierarchy, When Constructors Are Executed, Method Overriding, Dynamic Method Dispatch, Using Abstract Classes, Using final with Inheritance, Local Variable Type Inference and Inheritance, The Object Class. Interfaces: Interfaces, Default Interface Methods, Use static Methods in an Interface, Private Interface Methods. Chapter 8, 9	6
Module – 4: Packages	No. of Hours
Packages, Packages and Member Access, Importing Packages. Exceptions: Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Exceptions, Creating Your Own Exception Subclasses, Chained Exceptions. Chapter 9, 10	6
Module – 5: Multithreaded Programming:	No. of Hours
The Java Thread Model, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive() and join(), Thread Priorities, Synchronization, Interthread Communication, Suspending, Resuming, and Stopping Threads, Obtaining a Thread's State. Enumerations, Type Wrappers and Autoboxing: Enumerations (Enumeration Fundamentals, The values() and valueOf() Methods), Type Wrappers (Character, Boolean, The Numeric Type Wrappers), Autoboxing (Autoboxing and Methods, Autoboxing/Unboxing Occurs in Expressions, Autoboxing/Unboxing Boolean and Character Values). Chapter 11, 12	6

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Demonstrate proficiency in writing simple programs involving branching and looping structures.						
CO2	Design a class involving data members and methods for the given scenario.						
CO3							

CO4	Use the concept of packages and exception handling in solving complex problem
CO5	Apply concepts of multithreading, autoboxing and enumerations in program development

Sl. No.	Programming Experiments (Suggested and are not limited to)
1.	Develop a JAVA program to add TWO matrices of suitable order N (The value of N should be read from
	command line arguments).
2.	Develop a stack class to hold a maximum of 10 integers with suitable methods. Develop a JAVA main
	method to illustrate Stack operations.
3.	A class called Employee, which models an employee with an ID, name and salary, is designed as shown in the
	following class diagram. The method raiseSalary (percent) increases the salary by the given percentage.
	Develop the Employee class and suitable main method for demonstration.
4.	A class called MyPoint, which models a 2D point with x and y coordinates, is designed as follows:
	• Two instance variables x (int) and y (int).
	• A default (or "no-arg") constructor that construct a point at the default location of (0, 0).
	• A overloaded constructor that constructs a point with the given x and y coordinates.
	• A method setXY() to set both x and y.
	• A method getXY() which returns the x and y in a 2-element int array.
	• A toString() method that returns a string description of the instance in the format "(x, y)".
	• A method called distance(int x, int y) that returns the distance from this point to another point given
	(x, y) coordinates
	• An overloaded distance(MyPoint another) that returns the distance from this point to the give
	MyPoint instance (called another)
	• Another overloaded distance() method that returns the distance from this point to the origin (0,0)
	Develop the code for the class MyPoint. Also develop a JAVA program (called TestMyPoint) to test
	all the methods defined in the class.
5.	Develop a JAVA program to create a class named shape. Create three sub classes namely: circle, triangle
	and square, each class has two member functions named draw () and erase (). Demonstrate polymorphism
	concepts by developing suitable methods, defining member data and main program.
6.	Develop a JAVA program to create an abstract class Shape with abstract methods calculate Area() and
	Calculate Perimeter(). Create subclasses Circle and Triangle that extend the Shape class and implement
	the respective methods to calculate the area and perimeter of each shape.
7.	Develop a JAVA program to create an interface Resizable with methods resize Width (int width) and
	Resize Height(int height) that allow an object to be resized. Create a class Rectangle that implements the
	Resizable interface and implements the resize methods.
8.	Develop a JAVA program to create an outer class with a function display. Create another class inside the
	outer class named inner with a function called display and call the two functions in the main class.
9.	Develop a JAVA program to raise a custom exception (user defined exception) for Division By Zero using
	try, catch, throw and finally.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

10.	Develop a JAVA program to create a package named mypack and import & implement it in a suitable
	class.
11.	Write a program to illustrate creation of threads using runnable class. (start method start each of the
	newly created thread. Inside the run method there is sleep() for suspend the thread for 500
	milliseconds).
12.	Develop a program to create a class My Thread in this class a constructor, call the base class constructor,
	using super and start the thread. The run method of the class starts after this. It can be observed that
	both main thread and created child thread are executed concurrently

Text Bo	ooks
1.	Java: The Complete Reference, 12 th Edition, by Herbert Schildt, November 2021, McGraw-Hill, ISBN:
	9781260463422

Reference Text Books											
1.	Programn	ning w	ith Java,	6 th Edition	n, by E Bal	agurus	amy, Mar-	2019, Mc	Graw Hill E	Education,	ISBN:
	97893531	62337.			•						
2.	Thinking	in	Java,	Fourth	Edition,	by	Bruce	Eckel,	Prentice	Hall,	2006
	(https://sd.l	olackba	ll.lv/libra	ry/thinking	_in_java_4th	_editio	n.pdf)				

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

The CIE marks for the theory component of the Integrated Course (IC) shall be 30 marks and for the laboratory component 20 marks.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY COMPONENT OF IC:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes / Weekly test / project work for (20+20) marks, scaled down to **20 marks**.
- 4. Total marks scored (30+20 = 50 marks) scaled down to 25.

CIE FOR THE PRACTICAL COMPONENT OF IC:

- 1. On completion of every experiment / program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- 2. Each experiment is evaluated for 10 marks and scaled down to 5 marks.
- 3. Laboratory test at the end of the 15th week of the semester / after completion of all the experiments shall be conducted for **50 marks** and scaled down to **20 marks**.
- 4. Total marks scored for lab component: 05+20=25 marks.
- 5. The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of maximum marks 25) in the theory and 10(40% of Maximum marks 25) in the practical.
- 6. The laboratory component of the **integrated course** shall be CIE only. However, in SEE, the questions from the practical component shall be included.

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

Theory									
IA Test	Exam conducted for	Scaled down to	Average of best two tests	Total					
IA-1	50	30							
IA-2	50	30	30						
IA-3	50	30		50/2=25					
Two Assignments	2×10=20	10	10						
Two Quizzes	2×10=20	10	10						

LAB											
Continuous performance and record											
writing Internal Test + Viva	Exam conducted for 50	Scaled down to 20	5+20=25								
voce	marks	marks									

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and carries 20 Marks.
- 4. **Part-B** contains total 10 questions. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice. Students should answer five full questions, selecting one full question from each module.
- 5. Students have to answer for 100 marks and marks scored out of 100 shall be proportionally reduced to 50 marks.
- 6. The maximum marks from the practical component to be included in the SEE question paper is 16 marks.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	-	-	-	3	1	-	-	1	-
CO2	2	2	-	-	-	2	1	-	-	2	-
CO3	1	1	-	-	-	1	2	-	-	2	-
CO4	1	1	-	-	-	1	2	-	-	1	-
CO5	1	1	-	-	-	1	2	-	-	1	-

Level 3 – High, Level 2 – Moderate, Level 3 - Low

SEMESTER-IV										
	ROBOTIC PROCESS AUTOMATION Category: ESC/ETC/PLC-IV									
	(Common to CSE, CSD)									
Course Code	:	B24 CG462	CIE	:	50 Marks					
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks					
Total Hours	:	45(T)	Total	:	100 Marks					
Credits	:	3	SEE Duration	:	3 Hrs					

	Course Objectives					
1.	To understand the basic concepts of Robotic Process Automation.					
2.	To expose to the key RPA design and development strategies and methodologies.					
3.	To learn the fundamental RPA logic and structure and real world applications.					
4.	To explore the Exception Handling in RPA and version control systems.					
5.	To learn to deploy and Maintain the software bots.					

Module – 1: INTRODUCTION TO ROBOTIC PROCESS AUTOMATION	No. of Hours		
Emergence of Robotic Process Automation (RPA), Evolution of RPA, Differentiating RPA from Automation - Benefits of RPA - Application areas of RPA, Components of RPA, RPA Platforms. Robotic Process Automation Tools - Templates, User Interface, Domains in Activities, Workflow Files.	9		
Module – 2 : AUTOMATION PROCESS ACTIVITIES	No. of Hours		
Sequence, Flowchart & Control Flow: Sequencing the Workflow, Activities, Flowchart, Control Flow for Decision making. Data Manipulation: Variables, Collection, Arguments, Data Table, Clipboard management, File operations Controls: Finding the control, waiting for a control, Act on a control, Ui Explorer, Handling Events	9		
Module – 3: APP INTEGRATION, RECORDING AND SCRAPING			
App Integration, Recording, Scraping, Selector, Workflow Activities. Recording mouse and keyboard actions to perform operation, Scraping data from website and writing to CSV. Real-World Applications and Use Cases.	9		
Module – 4: EXCEPTION HANDLING AND CODE MANAGEMENT	No. of Hours		
Exception handling, Common exceptions, Version Control Systems, Logging- Debugging techniques, Collecting crash dumps, Error reporting. Code management and maintenance: Project organization, Nesting workflows, Reusability, Templates, Commenting techniques.	9		
Module – 5: DEPLOYMENT AND MAINTENANCE	No .of Hours		
Covers publishing bots using publish utilities, deploying and managing bots via orchestration servers, configuring control bots, handling license management, managing updates, exploring RPA vendors including open-source tools, and understanding future trends in RPA.	9		

Cours	Course Outcomes: At the end of the course, the students will be able to					
CO1	Understand the fundamental concepts and architecture of Robotic Process Automation (RPA).					
CO2	Design and develop basic RPA workflows using industry-standard tools and methodologies.					
CO3	Apply logical structures and RPA components to solve real-world automation problems.					
CO4	Handle exceptions and manage versions effectively within RPA solutions.					
CO5	Deploy, monitor, and maintain software bots using orchestration servers and best practices.					

Text Bo	Text Books								
1.	Learning Robotic Process Automation: Create Software robots and automate business processes with the								
	leading RPA tool - UiPath by Alok Mani Tripathi, Packt Publishing, 2018.								
2.	Tom Taulli, "The Robotic Process Automation Handbook: A Guide to Implementing RPA Systems", Apress								
	publications, 2020.								

Reference Text Books						
1.	Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Lauren Livingston (Author),					
	Introduction to Robotic Process Automation: a Primer, Institute of Robotic Process Automation, Amazon					
	Asia-Pacific Holdings Private Limited, 2018					

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

2.	Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive
	Tasks & Become An RPA Consultant, Amazon Asia-Pacific Holdings Private Limited, 2018
3.	A Gerardus Blokdyk, "Robotic Process Automation Rpa A Complete Guide", 2020

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	2	1	2	1	1	2	1	2	1
CO2	3	3	3	2	3	1	1	4	4	4	4
CO3	3	3	3	2	3	2	1	2	2	2	2
CO4	2	2	2	2	3	1	1	2	1	2	1
CO5	2	2	3	2	3	2	2	2	2	2	3

Level 3 - High, Level 2 - Moderate, Level 1 - Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

SEMESTER-IV							
CAPACITY PLANNING FOR IT							
		Category: ESC/ETC/PI	LC-IV				
		(Common to CSE, CSD	, ISE)				
Course Code	:	B24IS463	CIE	:	50 Marks		
Teaching Hours L : T : P	:	3:0:0	SEE	:	50 Marks		
Total Hours	:	45(T)	Total	:	100 Marks		
Credits	:	3	SEE Duration	:	3 Hrs		

	Course Objectives						
1.	Understand requirement and measurements for capacity planning, measurement and monitoring.						
2.	Measurement of data for prediction towards the planning process.						
3.	Understand concepts related to deployment, installation, configuration, and management.						
4.	Role of virtualization and cloud services in capacity planning.						

Module – 1	No. of Hours
Goals, Issues, and Processes: capacity planning, Quick and Dirty Math, Predicting When Your	
Systems Will Fail, Make Your System Stats Tell Stories, Buying Stuff: Procurement Is a Process,	
Performance and Capacity: Two Different Animals, The Effects of Social Websites and Open APIs.	9
Setting Goals for Capacity: Different Kinds of Requirements and Measurements, Architecture	
Decisions.	
Module – 2	No. of Hours
Measurement: Units of Capacity: Aspects of Capacity Tracking Tools, Applications of Monitoring.	9
Module – 3	No. of Hours
Measurement: API Usage and Its Effect on Capacity, Examples and Reality.	9
Predicting Trends: Riding Your Waves.	9
Module – 4	No. of Hours
Predicting Trends: Procurement, The Effects of Increasing Capacity, Long-Term Trends, Iteration	
and Calibration. Deployment: Automated Deployment Philosophies, Automated Installation Tools,	9
Automated Configuration.	
Module – 5	No. of Hours
Virtualization and Cloud Computing: Virtualization, Cloud Computing, Computing Resource	
Evolutions, Mixed Definitions, Cloud Capacity, Use it or lose it (your wallet), Measuring the clouds,	9
Cloud Case Studies, Cloud Use Case: Anonymous Desktop Software Company.	-

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	dentify the requirement and measurements for capacity planning by considering the goal, issues, and						
	processes.						
CO2	Explain capacity measurement and monitoring.						
CO3	Make use of measurement data for prediction towards overall planning process.						
CO4	Explain the concepts related to deployment, installation, configuration, and management.						
CO5	Demonstrate how the virtualization and cloud services fit into a capacity plan.						

Text Bo	oks
1.	John Allspaw, The Art of Capacity Planning, 2008, O'Reilly

Web links and Video lectures (e-Resources)

- 1.https://www.youtube.com/watch?v=w0cD26CLBA0
- 2. https://www.youtube.com/watch?v=5-hhfBXykec
- 3. https://www.youtube.com/watch?v=9e4IohiFmZ8&t=63s
- 4. https://www.youtube.com/watch?v=qj4ziswxupE
- 5. https://www.youtube.com/watch?v=jTW79ofC6Go
- 6. https://www.youtube.com/watch?v= pPlanX5wQY

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A is Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	1	-	1	1	1	-	-	-	-	1	-
CO2	1	-	1	1	1	-	-	-	-	1	-
CO3	1	-	1	1	1	-	-	-	-	1	-
CO4	1	-	1	1	1	-	-	-	-	1	-
CO5	1	-	1	1	1	-	-	-	-	1	-

Level 3 – High, Level 2 – Moderate, Level 1 -Low

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

		SEMEST	ER-IV		
		GREEN IT AND SU			
		Category: ESC/			
		(Common to	CSE,ISE)		
Course Code	:	B24CS464	CIE	:	50 Marks
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks
Total Hours	:	45(T)	Total	:	100 Marks
Credits	:	3	SEE Duration	:	3 Hrs

Course	Course Objectives						
1.	Understand challenges for Green ICT and the Industrial Revolution.						
2.	Illustrate Emerging Technologies and Their Environmental Impact.						
3.	Learn different aspects of ICT metrics and Systems Engineering for Designing.						
4.	Learn the Sustainable Cloud Computing and future aspects.						
5.	Explore effects of software design on the sustainability.						

Module – 1: Green ICT -History, Agenda, and Challenges Ahead	No. of Hours
Introduction, Industrial Revolution, The Emergence of Information and Communication Technologies,	0
The Agenda and Challenges Ahead.	9
Module – 2: Emerging Technologies and Their Environmental Impact	No. of Hours
Introduction, Number of Connected Devices, Increased, Functionality, Increased Number of Separate	
Functions, Increased Demand for Speed and Reliability, Obsolescence—The Problem of Backward	
Compatibility, The Other Side of the Balance Sheet, Videoconference as an Alternative to Business	9
Travel, Dematerialization of Product Chain, Travel Advice/Road Traffic Control, Intelligent Energy	
Metering, Building Management Systems, Saving IT	
Module – 3: Measurements and Sustainability	No. of Hours
Introduction, ICT Technical Measures, Ecological Measures and Ethical Consideration, Systems	9
Engineering for Designing Sustainable ICT-Based Architectures.	9
Module – 4: Sustainable Cloud Computing	No. of Hours
Introduction, Challenges in the Use of Cloud Computing As Green Technology, Cloud Computing and	
Sustainability, Sustainable Applications of Cloud Computing, Technologies Associated With	9
Sustainable Cloud Computing, Future Prospects of Sustainable Cloud Computing, Reflections on	9
Sustainable Cloud Computing Applications.	
Module – 5: Sustainable Software Design	No. of Hrs
Overview and Scope, Evaluating Sustainability Effects, Sustainability and the Product Life Cycle,	
Direct Effects: Sustainability During Use, Runtime Energy Consumption Basics, Analyzing the	9
Energy Consumption of an Application, Energy Consumption Reduction Using Physical Properties of	9
Semiconductors, Optimizing the Energy	

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	Classify the challenges for Green ICT					
CO2	Relate the environmental impact due to emerging technologies.					
CO3	Demonstrate different aspects of ICT metrics.					
CO4	Compare the various parameters related to Sustainable Cloud Computing.					
CO5	Interpret the effects of software design on the sustainability.					

Textboo	ks
1.	Green Information Technology – A Sustainable Approach, Mohammad Dastbaz Colin Pattinson, Babak Akhgar, Elsevier, 2015 Inc
2.	San Murugesan; G. R. Gangadharan, Harnessing Green IT: Principles and Practices, Wiley-IEEE Press

Web links and Video lectures (e-Resources)

- 1. https://www.youtube.com/watch?v=kvn_-mJ2tSo
- 2. https://www.youtube.com/watch?v=kxngsYn5N3Y
- 3. https://www.youtube.com/watch?v=EgdFi3sCgzU
- 4. https://www.brightest.io/sustainability-measurement

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

5. https://www.youtube.com/watch?v=S2m49Op25Zw

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

• Literature survey/review

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of continuous Internal Evaluation (CIE) is 50% and for the Semester End Examination (SEE) is 50%. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50). The minimum passing mark for SEE is 35% of maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. Student has to secure a minimum 40% (40 marks out of 100) in the total of the CIE and SEE together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks, after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

- 1. The question paper shall be set for 100 marks and duration of SEE is 3 hours.
- 2. The question paper will have two parts: Part-A and Part-B.
- 3. **Part-A** should contain minimum **Two or Four** quiz questions from each module of 02 marks/ 01 marks each. **Part-A** is **Compulsory** and it carries 20 Marks.
- 4. **Part-B** contains total 10 questions.
- 5. Two questions of 16 marks (with minimum of 3 sub questions) from each module with internal choice.
- 6. Students should answer five full questions, selecting one full question from each module.
- 7. Question papers to be set as per the Blooms Taxonomy levels.

POCO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	-	3	1	3	3	3	-	-	-	2
CO2	2	-	3	1	3	3	3	-	-	-	2
CO3	2	-	3	1	3	3	3	-	-	-	2
CO4	2	-	3	1	3	3	3	-	-	-	2
CO5	2	•	3	1	3	3	3	-	-	-	2

Level 3 - High, Level 2 - Moderate, Level 1 - Low

		SEMESTER-IV			
		MICROSOFT POWER	R BI		
		Category: AEC/SEC-	IV		
	(Co	ommon to CSE, ISE, CSD, AIN	ML, CSE(IC))		
Course Code	:	B24IS481	CIE	:	50 Marks
Teaching Hours L: T: P	:	1:0:0	SEE	:	50 Marks
Total Hours	:	15(T)	Total	:	100 Marks
Credits	:	1	SEE Duration	:	1 Hrs

	Course Objectives
1.	Understand the Core Concepts and Architecture of Power BI
2.	Import, Transform, and Model Data Effectively
3.	Design and Develop Interactive Reports and Dashboards
4.	Implement Advanced Data Analysis Using DAX
5.	Publish, Share, and Collaborate on Power BI Reports

Module – 1: Introduction to Business Intelligence and Power BI	No. of Hours
Overview of Business Intelligence (BI), Introduction to Microsoft Power BI, Power BI Desktop vs. Power BI Service vs. Power BI Mobile, Installing and navigating Power BI Desktop, Power BI Ecosystem Overview, Use Cases of Power BI in Different Industries, Power BI File Types and Formats, Navigating the Power BI Desktop Interface, Power BI Community and Support Resources	3
Module – 2: Data Loading and Transformation (Power Query)	No. of Hours
Connecting to various data sources (Excel, SQL Server, Web, CSV, etc.) Using Power Query Editor for data transformation Cleaning, shaping, and filtering data Merging and appending queries Creating custom columns Data types and handling missing values, Connecting to Diverse Data Sources, Data Transformation Techniques, Parameterization and Function Creation, Data Type Handling and Locale Settings	3
Module – 3: Data Preparation with Power Query	No. of Hours
Introduction to Power Query Editor, Basic data cleaning and transformation Removing nulls and duplicates, Changing data types, Filtering rows and columns, Creating simple calculated columns Data Profiling and Diagnostics, Text Data Preparation, Numerical Data Preparation, Date and Time Handling, Conditional Column Creation	3
Module – 4: Data Visualization and Report Building	No. of Hours
Overview of visualization types (bar charts, line charts, maps, gauges, etc.), Formatting and customizing visualizations, Adding slicers, filters, and drill-throughs Creating and organizing multiple report pages Using themes and templates for consistency Understanding Visual Types and Use-Cases Interactivity and Navigation, Accessibility and UX Design Principles	3
Module – 5: Power BI Integration and Advanced Features	No. of Hours
Power BI with Excel (PivotTables, Power Pivot), Using Power BI with SharePoint and Teams, Power BI with Power Automate and Power Apps (basic overview), Embedding Power BI reports in websites and portals	3

Cours	e Outcomes: At the end of the course, the students will be able to
CO1	Understand the architecture, components, and functionalities of the Power BI ecosystem including Desktop,
	Service, and Mobile platforms.
CO2	Demonstrate the ability to connect to various data sources and perform data transformation using Power Query
	for clean and structured datasets.
CO3	Develop data models with relationships, calculated columns, and DAX measures to support accurate and
	efficient data analysis.
CO4	Create interactive and visually appealing reports and dashboards using a variety of visualization tools and
	techniques in Power BI.
CO5	Publish and share reports through the Power BI Service, enabling collaboration, scheduled data refresh, and
	secure data distribution.

Text	Books
1.	Data Visualization with Microsoft Power BI Authors: Alex Kolokolov& Maxim Zelensky, Publisher:
	O'Reilly Media, Release: September 2024

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

2.	Microsoft Power BI Cookbook – 3 rd Edition , Authors: Greg Deckler& Brett Powell, Publisher: Packt
	Publishing, Release: July 2024

Reference Text Books					
1.	Expert Data Modeling with Power BI – Second Edition, Authors: SoheilBakhshi& Christian Wade				
	Publisher: Packt Publishing, Release: April 2023				
2.	Microsoft Power BI Performance Best Practices – Second Edition, Authors: Thomas LeBlanc & Bhavik				
	Merchant Publisher: Packt Publishing Release: August 2024				
3.	Microsoft Power BI: The Complete Masterclass – 2025 Edition by Nikolai Schuler				

Web links and Video lectures (e-Resources)

- 1. https://learn.microsoft.com/en-us/training/powerplatform/power-bi
- 2. https://www.youtube.com/watch?v=e6QD8lP-m6E
- 3. https://www.youtube.com/watch?v=e6QD8lP-m6E

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks (Multiple Choice Questions), after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

SEMESTER-IV					
		DEVOPS			
		Category: AEC/SEC-	IV		
	(Common to CSE, ISE, AIML, CSE(IC), CSD)				
Course Code	:	B24CS482	CIE	:	50 Marks
Teaching Hours L: T: P	:	0:0:2	SEE	:	50 Marks
Total Hours	:	15(P)	Total	:	100 Marks
Credits	:	1	SEE Duration	:	3 Hrs

	Course Objectives
1.	To introduce DevOps terminology, definition & concepts
2.	To understand the different Version control tools like Git, Mercurial
3.	To understand the concepts of Continuous Integration/ Continuous Testing/ Continuous Deployment)
4.	To understand Configuration management using Ansible
5.	Illustrate the benefits and drive the adoption of cloud-based Devops tools to solve real world problems

Sl. No	List of Experiments
1.	Introduction to Maven and Gradle: Overview of Build Automation Tools, Key Differences Between Maven
	and Gradle, Installation and Setup
2.	Working with Maven: Creating a Maven Project, Understanding the POM File, Dependency Management and
	Plugins
3.	Working with Gradle: Setting Up a Gradle Project, Understanding Build Scripts (Groovy and Kotlin DSL),
	Dependency Management and Task Automation
4.	Practical Exercise: Build and Run a Java Application with Maven, Migrate the Same Application to Gradle
5.	Introduction to Jenkins: What is Jenkins? Installing Jenkins on Local or Cloud Environment, Configuring
	Jenkins for First Use
6.	Continuous Integration with Jenkins: Setting Up a CI Pipeline, Integrating Jenkins with Maven/Gradle,
	Running Automated Builds and Tests
7.	Configuration Management with Ansible: Basics of Ansible: Inventory, Playbooks, and Modules, Automating
	Server Configurations with Playbooks, Hands-On: Writing and Running a Basic Playbook
8.	Practical Exercise: Set Up a Jenkins CI Pipeline for a Maven Project, Use Ansible to Deploy Artifacts
	Generated by Jenkins
9.	Introduction to Azure DevOps: Overview of Azure DevOps Services, Setting Up an Azure DevOps Account
	and Project
10.	Creating Build Pipelines: Building a Maven/Gradle Project with Azure Pipelines, Integrating Code
	Repositories (e.g., GitHub, Azure Repos), Running Unit Tests and Generating Reports
11.	Creating Release Pipelines: Deploying Applications to Azure App Services, Managing Secrets and
	Configuration with Azure Key Vault, Hands-On: Continuous Deployment with Azure Pipelines
12.	Practical Exercise and Wrap-Up: Build and Deploy a Complete DevOps Pipeline, Discussion on Best
	Practices and Q&A

Course	Course Outcomes: At the end of the course, the students will be able to			
CO1	Demonstrate different actions performed through Version control tools like Git			
CO2	Perform Continuous Integration and continuous testing with Jenkins.			
CO3	Perform Continuous Deployment using Jenkins by building and automating test cases using Maven & Gradle.			

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

CO4	Experiment with configuration management using Ansible.
CO5	Demonstrate Cloud-based DevOps tools using Azure DevOps.

ASSESSMENT DETAILS BOTH (CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

Component	Scale down to	Total Marks
Conduction of experiments and Record Writing (Each Experiment evaluated	20	20
for 10 marks)		
Internal Lab Test 1(After 6 experiments)	15	15
Exam conduction for 50 marks		
Internal Lab Test 2 (After 6 experiments)	15	15
Exam conduction for 50 marks		
	CIE	50

SEMESTER END EXAMINATION (SEE)

- 1. SEE marks for the practical course are 50 Marks. Practical examinations are to be conducted between the schedules mentioned in the academic calendar of the Institution.
- 2. All laboratory experiments are to be included for practical examination.
- 3. Students can pick one question (experiment) from the questions lot prepared by the examiners.
- 4. Evaluation of test write-up, conduction procedure, result and viva will be conducted jointly by examiners.
- 5. Rubrics suggested for SEE, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks.
- 6. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero. The minimum duration of SEE is 03 hours.

SEMESTER IV					
	MULTIMEDIA AND ANIMATION				
		Category: AEC/SEC	C-IV		
	(Common to CSE, CSD, ISE)				
Course Code	:	B24IS483	CIE	:	50 Marks
Teaching Hours L: T: P	:	1:0:0	SEE	:	50 Marks
Total Hours	:	15(T)	Total	:	100 Marks
Credits	:	1	SEE Duration	:	1 Hrs

	Course Objectives			
1.	To grasp the fundamental knowledge of Multimedia elements and systems			
2.	To get familiar with Multimedia file formats and standards			
3.	To learn the process of Authoring multimedia presentations			
4.	To learn the techniques of animation in 2D and 3D and for the mobile UI			
5.	To explore different popular applications of multimedia			

Module – 1: Introduction to Multimedia	No. of Hours
Definitions, Elements, Multimedia Hardware and Software, Distributed multimedia systems, challenges: security, sharing / distribution, storage, retrieval, processing, computing. Multimedia metadata, Multimedia databases, Hypermedia, Multimedia Learning.	3
Module – 2 : Multimedia File Formats and Standards	No. of Hours
File formats – Text, Image file formats, Graphic and animation file formats, Digital audio and Video file formats, Color in image and video, Color Models. Multimedia data and file formats for the web.	3
Module – 3: Multimedia Authoring	No. of Hours
Authoring metaphors, Tools Features and Types: Card and Page Based Tools, Icon and Object Based Tools, Time Based Tools, Cross Platform Authoring Tools, Editing Tools, Painting and Drawing Tools, 3D Modeling and Animation Tools, Image Editing Tools, audio Editing Tools, Digital Movie Tools, Creating interactive presentations, virtual learning, simulations.	3
Module – 4: Animation	No. of Hours
Principles of animation: staging, squash and stretch, timing, onion skinning, secondary action, 2D,2 ½ D, and 3D animation, Animation techniques: Keyframe, Morphing, Inverse Kinematics, Hand Drawn, Character rigging, vector animation, stop motion, motion graphics, , Fluid Simulation, skeletal animation, skinning Virtual Reality, Augmented Reality.	3
Module – 5: Multimedia Applications	
Multimedia Big data computing, social networks, smart phones, surveillance, Analytics, Multimedia Cloud Computing, Multimedia streaming cloud, media on demand, security and forensics, Online social networking, multimedia ontology, Content based retrieval from digital libraries.	3

Course	Course Outcomes: At the end of the course, the students will be able to			
CO1	Get the bigger picture of the context of Multimedia and its applications			
CO2	Use the different types of media elements of different formats on content pages			
CO3	Author 2D and 3D creative and interactive presentations for different target multimedia applications.			
CO4	Use different standard animation techniques for 2D, 21/2D, 3D applications			
CO5	Understand the complexity of multimedia applications in the context of cloud, security, big data streaming,			
	social networking, CBIR etc.,			

Text Books							
1.	1. Ze-NianLi, MarkS. I	Drew, JiangchuanLiu, Fundamentals of Multimedia", 3 rd Edition, Springer Texts					
	in Computer Science, 202	1. (UNIT-I, II, III)					

Refer	Reference Text Books							
1.	John M Blain, The Complete Guide to Blender Graphics: Computer Modeling & Animation, CRC press, 3 rd							
	Edition, 2016.							
2.	GeraldFriedland,RameshJain,"MultimediaComputing",CambridgeUniversityPress,2018.							
3.	PrabhatK.Andleigh,KiranThakrar,"MultimediaSystemDesign",PearsonEducation,1 st Edition,2015.							

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks (Multiple Choice Questions), after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

SEMESTER-IV								
DIGITAL AND MOBILE FORENSICS								
Category: AEC/SEC-IV								
Course Code	:	B24CS484	CIE	:	50 Marks			
Teaching Hours L: T: P	:	1:0:0	SEE	:	50 Marks			
Total Hours	:	15(T)	Total	:	100 Marks			
Credits	:	1	SEE Duration	:	1Hrs			

	Course Objectives						
1.	To understand the basic digital forensic techniques.						
2.	To understand the digital crime and investigations.						
3.	To understand how to be prepared for digital forensic readiness						
4.	To understand and use of forensic tools for iOS devices.						
5.	To understand and use of forensic tools for Android devices.						

Module – 1: Introduction to Digital Forensics					
Forensic Science – Digital Forensics – Digital Evidence – The Digital Forensics Process – Introduction					
- The Identification Phase - The Collection Phase - The Examination Phase - The Analysis Phase -	3				
The Presentation Phase					
Module – 2: Digital Crime and Investigation	No. of Hours				
Digital Crime – Substantive Criminal Law – General Conditions – Offenses – Investigation Methods	2				
for Collecting Digital Evidence – International Cooperation to Collect Digital Evidence	3				
Module – 3: Digital Forensic Readiness	No. of Hours				
Introduction – Law Enforcement versus Enterprise Digital Forensic Readiness – Rationale for Digital					
Forensic Readiness - Frameworks, Standards and Methodologies - Enterprise Digital Forensic	3				
Readiness – Challenges in Digital Forensics					
Module – 4: IoS Forensics	No. of Hours				
Mobile Hardware and Operating Systems - iOS Fundamentals - Jailbreaking - File System -					
Hardware – iPhone Security – iOS Forensics – Procedures and Processes – Tools – Oxygen Forensics	3				
– MobilEdit – iCloud					
Module – 5: Android Forensics					
Android basics – Key Codes – ADB – Rooting Android – Boot Process – File Systems – Security –					
Tools – Android Forensics – Forensic Procedures – ADB – Android Only Tools – Dual Use Tools–	3				
Oxygen Forensics – MobilEdit – Android App Decompiling.					

Course	Course Outcomes: At the end of the course, the students will be able to					
CO1	Have knowledge on digital forensics.					
CO2	Know about digital crime and investigations.					
CO3	Be forensic ready.					
CO4	Investigate, identify and extract digital evidence from iOS devices.					
CO5	Investigate, identify and extract digital evidence from Android devices.					

Text Books						
1.	Andre Arnes, "Digital Forensics", Wiley, 2018.					
2.	Chuck Easttom, "An In-depth Guide to Mobile Device Forensics", 1st Edition, CRC Press, 2022.					

Reference Text Books									
1.	Vacca, J, Computer Forensics, Computer Crime Scene Investigation, 2 nd Ed, CharlesRiver Media, 2005,								
	ISBN: 1-58450-389.								

Web links and Video lectures (e-Resources)
1.https://www.youtube.com/watch?v=y5JCmYJn0fY
2https://www.youtube.com/watch?v=PEL37Z9gbRQ

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Department of Computer Science and Engineering

ASSESSMENT DETAILS (BOTH CIE AND SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CONTINUOUS INTERNAL EVALUATION (CIE)

CIE FOR THE THEORY:

- 1. Three tests each of 50 marks (Multiple Choice Questions), after the completion of the syllabus 40%, 70% and 100% respectively.
- 2. Average of best two internal assessment tests each of 50 marks, scale down to 30 marks.
- 3. Any two assessment methods as per regulations i.e. Two assignments / Two Quizzes/ Weekly test / project work for 40 marks, scaled down to 20 marks.
- 4. Total marks scored (30+20 = 50 marks).
- 5. The minimum passing mark for the CIE is 40% of maximum marks (20 marks out of 50).

SEMESTER END EXAMINATION (SEE)

SEE paper shall be set for 50 questions, each of the 01 marks. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is 01 hour. The student has to secure a minimum of 35% of the maximum marks meant for SEE.

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO											
CO1	3	1	-	-	-	3	1	-	-	1	2
CO2	2	2	-	-	-	2	1	-	-	2	2
CO3	1	1	-	-	-	1	2	-	-	2	1
CO4	1	1	-	-	-	1	2	-	-	1	1
CO5	1	1	-	-	-	1	2	-	-	1	1

Level 3 - High, Level 2 - Moderate, Level 1 - Low