

RAJARAJESWARI COLLEGE OF ENGINEERING

An Autonomous Institution

Under VTU, Approved by AICTE, UGC & GoK No. 14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru

SCHEME & SYLLABUS

PG PROGRAM MCA 1st Semester

Effective from the Academic Year

2024-25

For more information www.rrce.org

RAJARAJESWARI COLLEGE OF ENGINEERING

An Autonomous Institution

Under VTU - Belagavi, Approved by AICTE, UGC & GoK

No. 14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

Institute Vision

To empower young minds through technology, research, and innovation, to produce technically competent and socially responsible professionals in higher education.

Institute Mission

To deliver excellence in education through innovative teaching, impactful research, and continuous skill development, preparing students to meet global challenges with technical expertise and ethical responsibility.

To foster a transformative learning environment that integrates technology, research, and practical experience, empowering students to become skilled professionals and socially conscious leaders.

To cultivate a culture of lifelong learning and professional excellence by encouraging creativity, research, and community engagement, equipping students with the skills to thrive in a dynamic world.

To provide a holistic educational experience that combines advanced technology, hands-on research, and community-focused learning, shaping students into competent, ethical professionals who contribute positively to society.

Quality Policy

Rajarajeswari College of Engineering is committed to imparting quality technical education that nurtures competent, ethical professionals with global relevance. We ensure academic excellence through a dynamic, outcome-based curriculum, experienced faculty, and cutting-edge infrastructure. Continuous improvement is driven by innovation, research, and strong industry collaboration. We foster holistic development and a progressive environment that supports lifelong learning, teamwork, and professional growth.

Core Values

Academic Excellence, Integrity, Innovation, Global Competence, Continuous Improvement

Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

Master of Computer Applications Scheme 2024-25

I Semester

MOOGAMBIGAI CHARITABLE AND EDUCATIONAL TRUST Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

Master of Computer Applications

Scheme of Teaching and Examinations – 2024
Outcome Based Education (OBE) and Choice Based Credit System (CBCS)
(Effective from the Academic Year 2024-25)

Sem: I

					Tea		Examination							
S. No	Course Category and Course Code				Course Title	TD / PSB	T Lecture	Practical/ Seminar	Tutorial / SDA	Credits	Duration in Hours	CIE Marks	SEE Marks	Total Marks
1.	BSC	P24MCA101	Mathematical Foundation for Computer Applications	MCA	3 0 2		4	3	50	50	100			
2.	IPCC	P24MCA102	Operating Systems with Linux Programming					4	3	50	50	100		
3.	PCC	P24MCA103	Data Structures and Algorithms	MCA	3 0 0		3	3	50	50	100			
4.	PCC	P24MCA104	Software Engineering	MCA	3 0 0		3	3	50	50	100			
5.	PCC	P24MCA105	Computer Networks	MCA	3 0 0		3	3	50	50	100			
6.	PCCL	P24MCL106	Data Structures and Algorithms Lab	MCA	0	2	0	1	3	50	50	100		
7.	PCCL	P24MCL107	Computer Networks Lab	MCA	0 2 0			1	3	50	50	100		
8.	NCMC	P24MCA108	Research Methodology and IPR	MCA	Online courses (NPTEL) PP									
	Bridge Course NCMC P24MCA109A P24MCA109B		C Programming	MCA	2	0	2	PP						
9.			Mathematics - I	eri	2 0			ļ			T			
	1	1		TOTAL	17	6	4	19	21	350	350	700		

Note: BSC-Basic Science Courses, PCC: Professional core. IPCC-Integrated Professional Core Courses, PCC: Professional Core Courses, PCCL-Professional Core Course lab ,NCMC- Non Credit Mandatory Course, L-Lecture, P-Practical, T/SDA-Tutorial / Skill Development Activities(Hours are for Interaction between faculty and students) P24MCA108- Research Methodology & IPR (Online) for the students who have not studied this course in the Undergraduate level. This course is not counted for vertical progression; Students have to qualify for the award of the master's degree.

Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi)

BSC: Basic Science Courses: Courses like Mathematics/ Science are the prerequisite courses that the concerned engineering stream board of Studies will decide. PCC: Professional Core Course: Courses related to the stream of Computer Applications, which will have both CIE and SEE components, students have to qualify in the

course for the award of the degree. Integrated Professional Core Course (IPCC): Refers to a Professional Theory Core Course Integrated with practical of the same course. The IPCC's theory part shall be

evaluated by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. Project Based Learning Course (PCC): Project Based Learning course is a professional core Course only Students have to complete a project out of learning from the course and SEE will be viva voce on project work. PCCL: Professional Core Course Laboratory: Practical courses whose CIE will be evaluated by the class teacher and SEE will be

evaluated by the two examiners. Skill development activities: Under Skill development activities in a concerning course, the students should

1. Interact with industry (small, medium, and large).

- 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3. Involve in case studies and field visits/ fieldwork.
- 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5. Handle advanced instruments to enhance technical talent. 6. Gain confidence in the modeling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude. All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc. Students and the course instructor/s are to be involved either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher

can take up relevant technical -activities that will enhance their skills. The prepared report shall be evaluated for CIE marks. P24MCA108- Research Methodology and IPR- None Credit Mandatory Course (NCMC) if students have not studied this course in their undergraduate program then he /she has to take this course at NPTEL and to qualify for this course is compulsory before completion of the minimum duration of the program (Two years), however, this course

Bridge Course: Non-Credit Mandatory Course P24MCA109B-Mathematics-I: Students who have not taken Mathematics at the 10+2 or degree level are required to study and pass this course in the 1st semester. P24MCA109A- C Programming: Students who have not taken Computer Subjects at the 10+2 or degree level are required to study and pass this course in the 1st semester. However, this course/subject will not be considered for vertical progression.

> Rajarajeswari College of Engineering Bengaluru - 560 074.

will not be considered for vertical progression.

COLLEGE OF ENGINEERING Camoballi Cross, Bengaluru-7¢

Rajarajeswari College of Engineering

(An Autonomous Institution Under Visvesvaraya Technological University, Belagavi) #14, Ramohalli Cross, Kumbalagodu, Mysore Road, Bengaluru - 560074

Master of Computer Applications Syllabus 2024-25

I Semester

Master of Computer Applications								
Semester I								
Mathematical Foundation for Computer Applications								
Theory								
Course Code	:	P24MCA101	CIE	:	50 Marks			
Teaching Hours L : T : P	:	3:2:0	SEE	:	50 Marks			
Total Hours : 42 Total : 100 Marks								
Credits		4	SEE Duration	:	3 Hrs			

Cour	se Objectives
1	To introduce the concepts of sets, functions and perform the operations associated with sets and functions.
2	Define and differentiate between discrete and continuous random variables, and understand their properties and examples.
3	To introduce the concepts of mathematical logic.
4	To introduce the concepts, relations and perform the operations
5	To introduce Graphs and use Graph Theory for solving problems.

Module - 1	No. of Hrs
Basic Structures: Sets and subsets, Operations of Sets: Principle of Inclusion, Exclusion and	
Pigeonhole principle, Functions and Matrices: Eigenvalues and Eigenvectors.	09
Module - 2	No. of Hrs
Random variable and Probability distribution: Concept of random variable, discrete probability	
distributions, continuous probability distributions, Mean, variance and Co-variance and co-	
variance of random variables. Binomial and normal distribution, Exponential and normal	09
distribution with mean and variables and problems	
Module - 3	No. of Hrs
Mathematical Logic: Propositional Logic, Applications of Propositional Logic, Propositional	
Equivalences Predicates and Quantifiers, Nested Quantifiers, Rules of Inference Introduction to	08
Proofs.	
Module - 4	No. of Hrs
Relations: Relations and Their Properties, n-ary Relations and Their Application, Representing	
Relations, Closures of Relations, Equivalence Relations, Partial Orderings	08
Module - 5	No. of Hrs
Graphs: Graphs and Graphs models, Graph Terminology and special types of graphs, Representing	
graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path problems,	08
Planar Graphs, Graph Coloring.	

Course	Course Outcomes: At the end of the course, the students will be able to							
CO1	Apply the fundamentals of set theory and matrices for the given problem.							
CO2	Apply the types of distribution; evaluate the mean and variance for the given case study/problem.							
CO3	Solve the given problem by applying the Mathematical logic concepts.							
CO4	Model the given problem by applying the concepts of graph theory.							
CO5	Identify and list the different applications of discrete mathematical concepts in computer Applications							

Text Bo	oks
1	Kenneth H Rosen, "Discrete Mathematics and its Applications", McGraw Hill publications, 7th edition.
2	Wolpole Myers Ye "Probability and Statistics for engineers and Scientist" Pearson Education, 8th
	edition.
Referen	ce Text Books
1	Richard A Johnson and C.B Gupta "Probability and statistics for engineers" Pearson Education.
2	J.K Sharma "Discrete Mathematics", Mac Millian Publishers India, 3rd edition,2011.

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Web links and Video lectures (e-Resources)

- 1. https://onlinecourses.nptel.ac.in/noc20_cs82/preview
- 2. https://www.nitt.edu/home/academics/departments/cse/programmes/mtech/curriculum/semester_2/mathematical_foundations_for_com/

RUBRIC	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)						
Sl. No	Components	Marks					
1	INTERNAL TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating).	30					
	THREE tests will be conducted. Each test will be evaluated for 50 Marks. Finally Test Marks Will Be Reduced To 30 Marks.						
2	Assignment/Quiz/Seminar/Group Discussion/Case Studies/Practical orientation on Design Thinking/ problem Solving Exercises/Presentation of Research work/hack-a-thon/Code-a-thon conducted by reputed organizations/ any other.	Any two 20					
	MAXIMUM MARKS	50					

RUBR	RUBRIC FOR THE SEMESTER END EXAMINATION (SEE)						
Sl. No	Contents	Marks					
	PART A						
1.	Module 1: Q. No 1 or 2	20					
2.	Module 2: Q. No 3 or 4	20					
3.	Module 3: Q. No 5 or 6	20					
4.	Module 4: Q. No 7 or 8	20					
5.	Module 5: Q. No 9 or 10	20					
	MAXIMUM MARKS	100					

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	3	3	2	-	1	-	1	-	1	-	-	2
CO2	3	3	1	-	2	-	1	-	1	-	-	2
CO3	3	2	1	-	1	-	1	-	-	2	-	-
CO4	3	3	1	-	1	-	1	-	1	-	-	-
CO5	3	2	1	-	1	-	-	-	1	1	-	1

Master of Computer Applications								
Semester I								
Operating Systems with LINUX Programming								
		Integrate	ed					
Course Code	:	P24MCA102	CIE	:	50 Marks			
Teaching Hours L:T:P	:	3:0:2	SEE	:	50 Marks			
Total Hours : 40 H L + 10H P Total : 100 Marks								
Credits		4	SEE Duration	:	3 Hrs			

Cours	Course Objectives						
1	It provides the basics and essentials of operating system						
2	It provides the concepts of Linux to solve computing problems						
3	It provides advance shell programming concepts						
4	It adds new coverage of interactive scripts using regular expressions in simple and advanced filters.						

Module - 1	No. of Hrs
Introduction: operating system, history (1990s to 2000 and beyond), distributed computing, parallel computation. Process concepts: definition of process, process states-Life cycle of a process, process management- process state transitions, process control block(PCB), process operations, suspend and resume, context switching, Interrupts -Interrupt processing, interrupt classes, Inter process communication-signals, message passing.	08
Module - 2	No. of Hrs
Asynchronous concurrent processes: mutual exclusion- critical section, mutual exclusion primitives, implementing mutual exclusion primitives, Peterson's algorithm, software solutions to the mutual Exclusion Problem-, n-thread mutual exclusion- Lamports Bakery Algorithm. Semaphores – Mutual exclusion with Semaphores, thread synchronization with semaphores, counting semaphores, implementing semaphores. Concurrent programming: monitors, message passing.	08
Module – 3	No. of Hrs
Deadlock and indefinite postponement: Resource concepts, four necessary conditions for deadlock, deadlock prevention, deadlock avoidance and Dijkstra's Banker's algorithm, deadlock detection, deadlock recovery.	08
Module - 4	No. of Hrs
Job and processor scheduling: scheduling levels, scheduling objectives, scheduling criteria, preemptive vs non-preemptive scheduling, interval timer or interrupting clock, priorities, scheduling algorithms- FIFO scheduling, RR scheduling, quantum size, SJF scheduling, SRT scheduling, HRN scheduling, multilevel feedback queues, Fair share scheduling.	08
Module - 5	No. of Hrs
Real Memory organization and Management:: Memory organization, Memory management, Memory hierarchy, Memory management strategies, contiguous vs non-contiguous memory allocation, single user contiguous memory allocation, fixed partition multiprogramming, variable partition multiprogramming, Memory swapping. Virtual Memory organization: virtual memory basic concepts, multilevel storage organization, block mapping, paging basic concepts, segmentation, Paging/segmentation systems. Virtual Memory Management: Demand Paging, Page replacement strategies.	08

Course Outcomes: At the end of the course, the students will be able to					
CO1	Understand the basics and essentials of operating system.				
CO2	Apply the concepts of Linux to solve computing problems				
CO3	Implement advance shell programming concepts.				
CO4	Develop interactive scripts using regular expressions in simple and advanced filters.				
CO5	Analyze the different memory allocation strategies.				

Text B	Books
1	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles – 10th Edition, John
	Wiley & Sons Inc., 2021.
2	EviNerneth, "Unix and Linux Handbook", Pearson Education, Fifth Edition -2019
Refere	ence Text Books
1	Eric Foster – Johnson, John C Welch, Micah Anderson, "Beginning Shell Scripting", Wrox Publication,
	2005
2	Richard Peterson, "The Complete Reference- Linux", Wiley Publication, Sixth Edition, 2017.
3	Dhananjay M. Dhamdhere, "Operating Systems – A Concept – Based Approach", Tata McGraw – Hill,
	3rd Edition, 2017

Web links and Video lectures (e-Resources)	
https://onlinecourses.nptel.ac.in/noc21_cs72/preview	

Sl.NO	Experiments
1	Write a shell script that takes a valid directory name as an argument and recursively discard all the
	subdirectories, find the maximum length of any file in that hierarchy and write its maximum value to the
	standard output.
2	Write a shell script that accepts a pathname and creates all the components in that pathname as
	directories. for example, if the script it named mpc, then the command mpc a/b/c/d should create
	directories a,a/b,a/b/c,a/b/c/d
3	Write a shell script that accepts two file names as arguments, check if the permissions for these files are
	identical and if the permissions are identical, output common permissions and otherwise output each file
	names followed by its permissions.
4	Write a shell script which accepts valid login names as arguments and print their corresponding home
	directories. if no arguments are specified, print a suitable error message
5	Create a script file called file properties that reads a filename entered and out its properties.
6	Write a shell script to implement terminal locking(similar to the lock command). It should prompt the
	user for a password. After accepting the password enter by the user, it must be prompt again for the
	matching password as conformation. And it the match occurs, it must lock the keyword until a matching
	password is enter again by the user. Note that the script must be written to disregard break, Ctrl-D. No
7	time limit need be implemented for the lock duration.
/	Write a shell script that accepts one or more file name as arguments and convert all of them to uppercase provided they exists in current directory.
8	Write a shell script that displays all the links to a file specified as the first argument to the script. The
0	second argument, which is optional, can be used to specify in which the search is to begin. If the second
	argument is not present, the search is to begin in current working directory. In either case the starting
	directory as well as all its sub-directories at all levels must be searched. The script need not include any
	error checking.
9	Write a shell script that accepts as filename as argument and display its creation time if the file exists
	and if it does not send output error message
10	Write a shell script to display the calendar for current month with current date replaced by * or **
	depending on whether the date has one or two digit.
11	Write a shell script to find a file/s that matches a pattern given as command line argument in the home
	directory, display the contents of the file and copy the file into the directory ~/mydir.
12	Write a shell script to list all the files in a directory whose file name is atleast 10 characters(Use expr
	command to check the length).
13	Write an awk script that accepts date argument in the form of dd- mm-yy and displays it in the form if
	month,day,year. The script should check the validity of the argument and in the case of error, display a
	suitable message.
14	Write an awk script to delete duplicated line from a text file. The order of the original lines must be
	remain unchanged.

RUBRI	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)					
Sl. No	Components	Marks				
1	INTERNAL TESTS (Theory): Students will be evaluated in test, descriptive questions with different complexity levels (Bloom's Taxonomy Levels: Remembering,					
	Understanding, Applying, Analyzing, Evaluating, and Creating).	20				
	THREE tests will be conducted. Each test will be evaluated for 50 Marks. Finally Test					
	Marks Will Be Reduced To 20 Marks.(Best of Two)					
2	Assignment & Quiz	Any two				
		20				
3	Skill Development Activity	20				
	Total	60				
	Total 60 Marks, it will Scaled down to	30				
4	INTERNAL TESTS (Practical):					
	On completion of every experiment/program in the laboratory, the students shall be					

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

evaluated and marks shall be awarded on the same day. The 10 marks are for conducting the experiment and preparation of the laboratory record, the other 10 marks shall be for the test conducted at the end of the semester. The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments. Write- ups are added and scaled down to 10 marks. The laboratory test at the end /after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks.	20	
MAXIMUM MARKS	50	

RUBRI	RUBRIC FOR THE SEMESTER END EXAMINATION (SEE)					
Sl. No	Contents	Marks				
	PART A					
1.	Module 1: Q. No 1 or 2	20				
2.	Module 2: Q. No 3 or 4	20				
3.	Module 3: Q. No 5 or 6	20				
4.	Module 4: Q. No 7 or 8	20				
5.	Module 5: Q. No 9 or 10	20				
	MAXIMUM MARKS	100				

PO /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
/CO												
CO1	-	-	-	-	-	-	1	-	-	-	-	-
CO2	-	-	-	-	-	-	1	-	-	-	1	-
CO3	3	3	3	3	3	1	1	-	-	-	2	1
CO4	3	3	3	1	3	1	1	-	-	-	-	3
CO5	3	3	-	1	3	1	1	-	-	-	-	1

Master of Computer Applications						
Semester I						
		Data Structures an	nd Algorithms			
		Theor	y			
Course Code	:	P24MCA103	CIE	:	50 Marks	
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks	
Total Hours	:	40	Total	:	100 Marks	
Credits		3	SEE Duration	:	3 Hrs	

Cour	Course Objectives					
1	Analyze step by step and develop algorithms to solve real world problems					
2	Evaluate the Expressions like postfix, prefix conversions.					
3	Implementing various data structures viz. Stacks, Queues, Linked Lists, Trees and Graphs.					
4	Understanding various searching & sorting techniques.					
5	Be able to compare functions using asymptotic analysis and describe the relative merits of worst, average					
	and best-case analysis.					

Module - 1	No. of Hrs	
Basic Concepts: Introduction to Arrays, Pointers and Dynamic Memory Allocation, Dynamic		
Array representations, Structures and Unions.		
Classification of Data Structures: Primitive and Non- Primitive, Linear and Nonlinear; Data		
structure Operations,	08	
Stack: Definition, Representation, Operations and Applications: Polish and reverse polish		
expressions, Infix to postfix conversion, evaluation of postfix expression, infix to prefix, postfix to		
infix conversion.		
Module - 2	No. of Hrs	
Queue: Definition, Representation, Queue Variants: Circular Queue, Priority Queue, Double		
Ended Queue; Applications of Queues and Programming Examples		
Linked List: Limitations of array implementation, Types of Linked List, Operations of Linked	08	
List.		
Memory Management: Static (Stack) and Dynamic (Heap), Memory Allocation, Memory		
management functions. Definition, Representation, Operations: getnode() and Freenode()		
operations.		
Module - 3	No. of Hrs	
Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked Representation of	08	
Binary Trees,		
Binary Tree Traversals: Inorder, postorder, preorder; Additional Binary tree operations.		
Threaded binary trees,		
Binary Search Trees: Definition, Insertion, Deletion, Traversal, Searching, Application of Trees-		
Evaluation of Expression, Programming Examples.		
Module - 4	No. of Hrs	
Fundamentals of the Analysis of Algorithm Efficiency: Notion of Algorithm, Fundamentals of		
Algorithmic problem Solving, Important Problem Types, Fundamental data Structures, Analysis	08	
Framework, Asymptotic Notations and Basic efficiency classes, Brute-Force Algorithms - Bubble		
Sort, Insertion sort, Shell sort.		
Module - 5	No. of Hrs	
Algorithms: Divide and Conquer - Merge sort, Quick sort, Binary Search, Greedy method -		
Dijkstra's algorithm, Prim's and Kruskal algorithm, Decrease and Conquer – DFS, BFS.	08	

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Course	Outcomes: At the end of the course, the students will be able to
CO1	Understand the fundamental Data Structures
CO2	Apply the operational aspects of stacks, Queues and linked list to solve recursive applications.
CO3	Analyze various types of sorting and searching techniques and identify the optimal approach for a given
	scenario.
CO4	Summarize the paradigms and approaches used to design and analyze algorithms by categorizing
	problems based on the popular domains.
CO5	Discuss Divide & conquer algorithms, Greedy Methods and Decrease and Conquer and measure their
	performance.

Text Bo	ooks
1	Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed, Universities Press, 2014.
2	Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014
Referer	nce Text Books
1	Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage Learning,
	2014.
2	Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, 2nd Ed,
	McGraw Hill, 2013
3	Introduction to the Design and Analysis of Algorithms, Anany Levitin: 2nd Edition, 2009. Pearson.

Web links and Video lectures (e-Resources)

- 1. NPTEL https://www.nitt.edu/home/academics/departments/cse/programmes
- Introduction to Data Structures GeeksforGeeks

Sl. No	C FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) Components	Marks
1	INTERNAL TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating).	30
	THREE tests will be conducted. Each test will be evaluated for 50 Marks. Finally Test Marks Will Be Reduced To 30 Marks.	
2	Assignment/Quiz/Seminar/Group Discussion/Case Studies/Practical orientation on Design Thinking/ problem Solving Exercises/Presentation of Research work/hack-a-thon/Code-a-thon conducted by reputed organizations/ any other.	Any two 20
	MAXIMUM MARKS	50

RUBR	IC FOR THE SEMESTER END EXAMINATION (SEE)	
Sl. No	Contents	Marks
	PART A	
1.	Module 1: Q. No 1 or 2	20
2.	Module 2: Q. No 3 or 4	20
3.	Module 3: Q. No 5 or 6	20
4.	Module 4: Q. No 7 or 8	20
5.	Module 5: Q. No 9 or 10	20
	MAXIMUM MARKS	100

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	_	3	2	-	-	-	1	-	1	-	-	-
CO2	3	-	-	-	-	-	1	-	1	-	-	-
CO3	3	1	1	-	-	-	1	-	-	2	-	1
CO4	3	-	-	-	3	-	1	3	1	-	-	3
CO5	-	2	3	-	1	-	-	-	1	1	-	1

Master of Computer Applications									
Semester I									
		Software Engineer	ring						
		Theory							
Course Code	:	P24MCA104	CIE	:	50 Marks				
Teaching Hours L : T : P	:	3:0:0	SEE	:	50 Marks				
Total Hours : 40 Total : 100 Marks									
Credits		3	SEE Duration	:	3 Hrs				

Course Objectives					
Outline software engineering principles and activities involved in building large software programmes.	rams.				
2 Identify ethical and professional issues and explain why they are of concern to software engin					
3 Explain the fundamentals of object oriented concepts.					
4 Describe the process of requirements gathering, requirements classification, requirements spec	ification and				
requirements validation.					
5 Differentiate system models, use UML diagrams and apply design patterns.					
6 Discuss the distinctions between validation testing and defect testing.					
Module – 1	No. of Hrs				
Introduction: Professional Software Development Attributes of good software, software					
engineering diversity, IEEE/ACM code of software engineering ethics, case studies. Software	08				
Process and Agile Software Development Software Process models: waterfall, incremental					
development, reuses oriented, Process activities; coping with change, The Rational Unified					
Process.					
Module – 2	No. of Hrs				
Agile Methods, Plan-Driven and Agile Development, Extreme Programming, Agile Project					
Management, scaling agile methods. Requirement Engineering: Functional and non-functional					
requirements, The Software requirements document, Requirements specification, Requirements					
engineering processes, Requirement elicitation and analysis, Requirement validation, Requirement					
management					
Module – 3	No. of Hrs				
What is object orientation? What is OO development? OO themes; Evidence for usefulness of OO					
development; OO modeling history, modeling as design Technique: Modeling; abstraction; the					
three models. Object and class concepts; Link and associations concepts; Generalization and	0.0				
inheritance; A sample class model; Navigation of class models; Practical tips. Advanced objects	08				
and class concepts; Associations ends; N-array association; Aggregation, Abstract class; Multiple					
inheritance; Metadata; Reification; Constraints; Derived data; packages; practical tips.	NI CII				
Module – 4	No. of Hrs				
System Models: Context models, Interaction models. Structural models. Behavioural models.					
Model-driven Engineering Design and Implementation: Introduction to RUP, Design Principles. Object-oriented design using the UML. Design patterns. Implementation issues. Open source					
development.	08				
Module – 5	No. of Hrs				
Software Testing: Development testing, Test-driven development, Release testing, User testing.	110. 01 1115				
Test Automation. Software Evolution: Evolution processes. Program evolution dynamics.					
Software maintenance. Legacy system management	08				
Software manifestance. Legacy system management	00				

Course	Course Outcomes: At the end of the course, the students will be able to						
CO1	Design a software system, component or process to meet desired needs within realistic constraints						
CO2	Analyze the differences between plan-driven and Agile development approaches, evaluating their advantages, limitations, and suitability for various project types						
CO3	Explore user-defined data structures like arrays in implementing solutions to problems like searching and sorting						
CO4	Explore user-defined data structures like structures, unions and pointers in implementing solutions						

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

CO5 Design and Develop Solutions to problems using modular programming constructs using functions

Text Bo	Text Books						
1	Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012.						
2	Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML,2nd Edition,						
	Pearson Education, 2005.						

Web links and Video lectures (e-Resources)

- 1. https://onlinecourses.nptel.ac.in/noc24_ce107/preview
- 2. http://www.digimat.in/nptel/courses/video/106106126/L01.html

Sl. No	Components	Marks
1	INTERNAL TESTS : Students will be evaluated in test, descriptive questions with different complexity levels (Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating).	30
	THREE tests will be conducted. Each test will be evaluated for 50 Marks. Finally Test Marks Will Be Reduced To 30 Marks.	
2	Assignment/Quiz/Seminar/Group Discussion/Case Studies/Practical orientation on Design Thinking/ problem Solving Exercises/Presentation of Research work/hack-a-thon/Code-a-thon conducted by reputed organizations/ any other.	Any two 20
	MAXIMUM MARKS	50

RUBR	IC FOR THE SEMESTER END EXAMINATION (SEE)	
Sl. No	Contents	Marks
	PART A	
1.	Module 1: Q. No 1 or 2	20
2.	Module 2: Q. No 3 or 4	20
3.	Module 3: Q. No 5 or 6	20
4.	Module 4: Q. No 7 or 8	20
5.	Module 5: Q. No 9 or 10	20
	MAXIMUM MARKS	100

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	3	3	2	-	3	-	1	-	1	-	-	2
CO2	3	3	3	-	2	-	2	-	1	-	-	2
CO3	3	2	2	-	3	-	1	-	-	2	-	1
CO4	3	3	3	-	2	-	2	-	1	-	-	3
CO5	3	2	1	2	3	-	-	-	1	1	-	1

Master of Computer Applications									
		Semester I							
Computer Networks									
Theory									
Course Code	:	P24MCA105	CIE	:	50 Marks				
Teaching Hours L: T: P	:	3:0:0	SEE	:	50 Marks				
Total Hours : 40 Total : 100 Marks									
Credits		3	SEE Duration	:	3 Hrs				

Cours	se Objectives
1	Recognize computer networks.
2	List computer network topologies.
3	List required hardware to constitute computer network
4	Explain each computer network topology physically or logically.

Module - 1	No. of Hrs
Introduction – Network Hardware – Software – Reference Models – OSI and TCP/IP Models –	
Example Networks: Internet, ATM, Ethernet and Wireless LANs - Physical Layer – Theoretical	08
Basis for Data Communication - Guided Transmission Media.	
Module - 2	No. of Hrs
Wireless Transmission - Communication Satellites - Telephone System: Structure, Local	
Loop, Trunks and Multiplexing and Switching. Data Link Layer: Design Issues – Error	08
Detection and Correction.	
Module - 3	No. of Hrs
Elementary Data Link Protocols - Sliding Window Protocols - Data Link Layer in the Internet -	
Medium Access Layer – Channel Allocation Problem – Multiple Access Protocols – Bluetooth.	08
Module - 4	No. of Hrs
Network Layer - Design Issues - Routing Algorithms - Congestion Control Algorithms - IP	
Protocol – IP Addresses – Internet Control Protocols. Introduction to NS2, Wired Script	08
Components and Parameters.	
Module - 5	No. of Hrs
Transport Layer - Services - Connection Management - Addressing, Establishing and Releasing	
a Connection – Simple Transport Protocol – Internet Transport Protocols (ITP) - Network	08
Security: Cryptography.	

Course	Course Outcomes: At the end of the course, the students will be able to				
CO1	CO1 To learn the basic concepts of Data communication and Computer network				
CO2	To learn about wireless Transmission.				
CO3	To learn about networking and data link layer.				
CO4	To study about Network communication.				
CO5	To learn the concept of Transport layer.				

Text Bo	oks
1	A. S. Tanenbaum, "Computer Networks", Prentice-Hall of India,
2	"Computer Networks A Systems Approach, Sixth Edition, 2021" Larry L Peterson
Referen	ce Text Books
1	B. A. Forouzan, "Data Communications and Networking", Tata McGraw Hill, 4th Edition,2017
2	F. Halsall, Data Communications, Computer Networks and Open Systems", Pearson Education,
3	D. Bertsekas and R. Gallagher, "Data Networks", PHI,.
4	Lamarca, "Communication Networks", Tata McGraw- Hill,
5	http://www.ietf.org/rfc.html relevant RFC document could be used to get more detailed information
	about any of the concepts prescribed in the syllabus like RFC 2460 can be referred to get detailed

Rajarajeswari College of Engineering

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

information about IPV6.

Web links and Video lectures (e-Resources)

https://archive.nptel.ac.in/courses/106/105/106105183/

RUBRIC	C FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY)	
Sl. No	Components	Marks
1	INTERNAL TESTS: Students will be evaluated in test, descriptive questions with different complexity levels (Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating).	30
	THREE tests will be conducted. Each test will be evaluated for 50 Marks. Finally Test Marks Will Be Reduced To 30 Marks.	
2	Assignment/Quiz/Seminar/Group Discussion/Case Studies/Practical orientation on Design Thinking/ problem Solving Exercises/Presentation of Research work/hack-a-thon/Code-a-thon conducted by reputed organizations/ any other.	Any two 20
	MAXIMUM MARKS	50

RUBR	RUBRIC FOR THE SEMESTER END EXAMINATION (SEE)					
Sl. No	Contents	Marks				
	PART A					
1.	Module 1: Q. No 1 or 2	20				
2.	Module 2: Q. No 3 or 4	20				
3.	Module 3: Q. No 5 or 6	20				
4.	Module 4: Q. No 7 or 8	20				
5.	Module 5: Q. No 9 or 10	20				
	MAXIMUM MARKS	100				

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	1	1	-	ı	-	-	2	ı	-	2	-	1
CO2	1	1	-	2	-	-	2	-	1	2	-	1
CO3	3	3	-	2	2	-	2	-	1	2	-	1
CO4	3	3	-	2	2	-	3	-	1	2	-	1
CO5	3	3	-	2	-	-	3	-	1	1	-	1

Master of Computer Applications							
Semester I							
	Data Structures and Algorithms Lab						
		Practical					
Course Code	Course Code : P24MCL106 CIE : 50 Marks						
Teaching Hours L: T: P : 0:0:2 SEE : 50 Marks					50 Marks		
Total Hours : 40 Total : 100 Marks							
Credits		1	SEE Duration	:	3 Hrs		

Co	ourse Objectives
1	Evaluate the Expressions like postfix, prefix conversions.
2	Implementing various data structures viz. Stacks, Queues, Linked Lists, Trees and Graphs

S.No	Experiments
1	Implement a Program in C for converting an Infix Expression to Postfix Expression
2	Design, develop, and execute a program in C to evaluate a valid postfix expression using stack. Assume that the postfix expression is read as a single line consisting of non-negative single digit operands and binary arithmetic operators. The arithmetic operators are + (add), - (subtract), * (multiply) and / (divide).
3	Design, develop, and execute a program in C to simulate the working of a queue of integers using an array. Provide the following operations: a. Insert b. Delete c. Display
4	Write a C program to simulate the working of a singly linked list providing the following operations: a. Display & Insert b. Delete from the beginning/end c. Delete a given element
5	Write a C program to Implement the following searching techniques a. Linear Search b. Binary Search.
6	Write a C program to implement the following sorting algorithms using user defined functions: a. Bubble sort (Ascending order) b. Selection sort (Descending order).
7	Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm (C programming)
8	From a given vertex in a weighted connected graph, find shortest paths to other vertices Using Dijkstra's algorithm (C programming)
	Demonstration Experiments (For CIE) if any
9	Using circular representation for a polynomial, design, develop, and execute a program in C to accept two polynomials, add them, and then print the resulting polynomial.
10	Design, develop, and execute a program in C to evaluate a valid postfix expression using stack. Assume that the postfix expression is read as a single line consisting of non-negative single digit operands and binary arithmetic operators. The arithmetic operators are + (add), - (subtract), * (multiply) and / (divide).

Course C	Course Outcomes: At the end of the course, the students will be able to					
CO1	Implement the techniques for evaluating the given expression.					
CO2	Implement sorting / searching techniques, and validate input/output for the given problem.					
CO3	Implement data structures (namely Stacks, Queues, Circular Queues, Linked Lists, and Trees), its operations and algorithms.					
CO4	Implement the algorithm to find whether the given graph is connected or not and conclude on the performance of the technique implemented.					

Sl. No	FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY) Contents	Marks
	The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End	
	Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum	
	marks. A student shall be deemed to have satisfied the academic requirements and	
	earned the credits allotted to each course. The student has to secure not less than 40% of	
	maximum marks in the semester-end examination (SEE). In total of CIE and SEE	
	student has to secure 50% maximum marks of the course.	
1		
1	 CIE marks for the practical course is 50 Marks. The split-up of CIE marks for record/ journal and test are in the ratio 60:40. Each experiment to be evaluated for conduction with observation sheet and record write- up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session. Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks. Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks). Weightage to be given for neatness and submission of record/write-up on time. Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14 week of the semester. In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for vivavoce. The suitable rubrics can be designed to evaluate each student's performance and learning ability. The average of 02 tests is scaled down to 20 marks (40% of the maximum marks). The 	50
	Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.	
	Maximum Mark	50
IRRIC	FOR THE SEMESTER END EXAMINATION (SEE)	30
2	Semester End Evaluation (SEE):	
	SEE marks for the practical course is 50 Marks. SEE shall be conducted jointly by the two examiners of the same institute; examiners are appointed by the University. All laboratory experiments are to be included for practical examination. (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall be decided jointly by examiners. Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly. Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. General rubrics suggested for SEE is mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners) Change of experiment is allowed only once and 10% Marks allotted to the procedure part to be made zero.	100
	The duration of SEE is 03 hours	
	MAXIMUM MARKS	100

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	2	1	-	-	-	-	2	-	-	2	-	1
CO2	2	1	-	-	-	-	2	-	1	2	-	1
CO3	2	3	-	-	-	-	2	-	1	2	-	1
CO4	3	3	-	-	-	-	3	-	1	2	-	1

Master of Computer Applications							
Semester I							
		Computer Networks	s Lab				
		Practical					
Course Code	:	P24MCL107	CIE	:	50 Marks		
Teaching Hours L: T: P	:	0:0:2	SEE	:	50 Marks		
Total Hours : 40 Total : 100 Marks							
Credits		1	SEE Duration	:	3 Hrs		

Co	Course Objectives						
1	Recognize computer networks.						
2	List computer network topologies.						
3	List required hardware to constitute computer network.						
4	Explain each computer network topology physically or logically.						

S.No	Experiments
1	Implement three nodes point – to – point network with duplex links between them. Set the queue size,
	vary the bandwidth and find the number of packets dropped.
2	Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
3	Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
4	Develop a simple data link layer that performs the flow control using the sliding window protocol, and
	loss recovery using the Go-Back-N mechanism.
5	Implement Dijsktra's algorithm to compute the shortest path through a network
6	Implement data encryption and data decryption
	Simulate the network with five nodes n0, n1, n2, n3, n4, forming a star topology. The node n4 is at the center. Node n0 is a TCP source, which transmits packets to node n3 (a TCP sink) through the node n4. Node n1 is another traffic source, and sends UDP packets to node n2 through n4. The duration of the simulation time is 10 seconds.
	Simulate to study transmission of packets over Ethernet LAN and determine the number of packets drop

Sl. No	Components	Mark
Sl. No	Components The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 40% of maximum marks in the semester-end examination (SEE). In total of CIE and SEE student has to secure 50% maximum marks of the course. CIE marks for the practical course is 50 Marks. The split-up of CIE marks for record/ journal and test are in the ratio 60:40. Each experiment to be evaluated for conduction with observation sheet and record write- up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session. Record should contain all the specified experiments in the syllabus and each	Mark
	 Record should contain all the specified experiments in the synabas and each experiment write-up will be evaluated for 10 marks. Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks). Weightage to be given for neatness and submission of record/write-up on time. Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14 week of the semester. In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for vivavoce. The suitable rubrics can be designed to evaluate each student's performance and learning ability. The average of 02 tests is scaled down to 20 marks (40% of the maximum marks). The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student. 	50
	MAXIMUM MARKS	50

	RUBRIC FOR THE SEMESTER END EXAMINATION (SEE)						
Sl. No	Contents	Marks					
	Semester End Evaluation (SEE):						
2	SEE marks for the practical course is 50 Marks. SEE shall be conducted jointly by						
	the two examiners of the same institute; examiners are appointed by the University.						
	All laboratory experiments are to be included for practical examination. (Rubrics)						
	Breakup of marks and the instructions printed on the cover page of the answer script						
	to be strictly adhered to by the examiners. OR based on the course requirement						
	evaluation rubrics shall be decided jointly by examiners.						
	Students can pick one question (experiment) from the questions lot prepared by the						
	internal /external examiners jointly.						
	Evaluation of test write-up/ conduction procedure and result/viva will be conducted	100					
	jointly by examiners. General rubrics suggested for SEE is mentioned here, writeup-						
	20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks.						
	SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled						
	down to 50 marks (however, based on course type, rubrics shall be decided by the						
	examiners)						

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Change of experiment is allowed only once and 10% Marks allotted to the procedure part to be made zero. The duration of SEE is 03 hours	
MAXIMUM MARKS	100

Course C	Course Outcomes: At the end of the course, the students will be able to					
CO1	Implement data link layer farming methods.					
CO2	Analyze error detection and error correction codes.					
CO3	Implement and analyze routing and congestion issues in network design.					
CO4	Implement Encoding and Decoding techniques used in presentation layer.					
CO5	To be able to work with different network tools.					

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	2	1	-	-	-	-	2	-	-	2	-	1
CO2	2	1	-	-	-	-	2	-	1	2	-	1
CO3	2	3	-	-	-	-	2	-	1	2	-	1
CO4	3	3	-	-	-	-	3	-	1	2	-	1
CO5	3	3	-	-	-	-	3	-	1	1	-	1

Master of Computer Applications								
	Semester I							
		C Programming						
Theory								
Course Code	:	P24MCA109A	CIE	:				
Teaching Hours L : T : P	:	2:2:0	SEE	:				
Total Hours : 30 Total :								
Credits		0	SEE Duration	:				

Cours	se Objectives
1	Elucidate the basic architecture and functionalities of a computer.
2	Apply programming constructs of C language to solve real-world problems
3	Explore user-defined data structures like arrays, structures and pointers in implementing solutions to problems
4	Design and Develop Solutions to problems using modular programming constructs such as functions and procedures

Module - 1	No. of Hrs
Introduction to C: Introduction to computers, input and output devices, designing efficient	
programs. Introduction to C, Structure of C program, Files used in a C program, Compilers,	06
Compiling and executing C programs, variables, constants, Input/output statements in C.	
Module - 2	No. of Hrs
Operators in C, Type conversion and typecasting. Decision control and Looping statements:	
Introduction to decision control, Conditional branching statements, iterative statements, nested	06
loops, break and continue statements, goto statement.	00
Module - 3	No. of Hrs
Functions: Introduction using functions, Function definition, function declaration, function call,	
return statement, passing parameters to functions, scope of variables, storage classes, recursive	
functions. Arrays: Declaration of arrays, accessing the elements of an array, storing values in	06
arrays, Operations on arrays, Passing arrays to functions,	
Module - 4	No. of Hrs
Two dimensional arrays, operations on two-dimensional arrays, two-dimensional arrays to	
functions, multidimensional arrays. Applications of arrays and introduction to strings:	
Applications of arrays, case study with sorting techniques. Introduction to strings: Reading strings,	0.6
writing strings, summary of functions used to read and write characters. Suppressing input using a	06
Scanset.	
Module - 5	No. of Hrs
Strings: String taxonomy, operations on strings, Miscellaneous string and character functions,	
arrays of strings. Pointers: Understanding the Computer's Memory, Introduction to Pointers,	
Declaring Pointer Variables Structures: Introduction to structures, Union, Files	06

Course Outcomes: At the end of the course, the students will be able to								
CO1	Elucidate the basic architecture and functionalities of a computer and also recognize the hardware parts.							
CO2	Apply programming constructs of C language to solve the real world problem							
CO3	Explore user-defined data structures like arrays in implementing solutions to problems like searching and							
	sorting							
CO4	Explore user-defined data structures like structures, unions and pointers in implementing solutions							
CO5	Design and Develop Solutions to problems using modular programming constructs using functions							

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

Text Bo	Text Books									
1	Computer fundamentals and programming in c, "Reema Thareja", Oxford University, Second edition,									
	2017.									
Referen	ice Text Books									
1	E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGraw-Hill.									
2	Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, Prentice Hall of India.									

Web links and Video lectures (e-Resources)	
1. https://onlinecourses.nptel.ac.in/noc24_cs02/	

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	3	3	2	-	3	-	1	-	1	-	-	2
CO2	3	3	3	-	2	-	2	-	1	-	-	2
CO3	3	2	2	-	3	-	1	-	-	2	-	1
CO4	3	3	3	-	2	-	2	_	1	-	-	3
CO5	3	2	1	2	3	-	-	-	1	1	-	1

Master of Computer Applications										
Semester I										
Mathematics - I										
		Theory								
Course Code	:	P24MCA109B	CIE	:						
Teaching Hours L:T:P	SEE	:								
Total Hours : 30 Total :										
Credits		0	SEE Duration	:						

Cou	Course Objectives								
1	The Curriculum supports the prerequisites to enhance their Mathematical knowledge towards understanding								
	mathematical Concepts in the concerned fields.								
2	Enhance problem-solving skills using mathematical models and algorithms.								
3	Develop logical reasoning and analytical thinking								
4	Understand the mathematical foundations of computer science, including discrete								
	mathematics and graph theory								
5	Apply mathematical concepts to computer science problems, such as algorithm design and analysis.								

Module – 1	No. of Hrs
Introduction to Number System: Overview of number systems: Binary numbers, Number	
based conversion, Octal and hexadecimal numbers, Complements.	06
Module – 2	No. of Hrs
Propositional Logics: Mathematical logic introduction-statements Connectives-negation, conjunction, disjunction- statement formulas and truth tables- conditional and bi Conditional statements- tautology contradiction.	06
Module – 3	No. of Hrs
Set Theory: Operations on sets, power set, Venn diagram, Cartesian product, relations,	
functions- types of functions - composition of functions.	06
Module – 4	No. of Hrs
Matrix algebra: Introduction, Types of matrices-matrix operations, transpose of a matrix,	
determinant of matrix, inverse of a matrix, Cramer's rule.	06
Module – 5	No. of Hrs
Differential calculus: Functions and limits - Simple Differentiation of Algebraic Functions –	
Evaluation of First and Second Order Derivatives – Maxima and Minima.	06

Text l	Text Books								
1	Digital Logic and Computer Design, M. MORRIS MANO Professor of Engineering								
	California State University, Los Angeles.								
2	Discrete mathematics and its applications / Kenneth H. Rosen, Monmouth University								
	(And formerly AT&T Laboratories).								

Cours	Course Outcomes: At the end of the course, the students will be able to							
CO1	Understand and convert between binary, octal, and hexadecimal number systems							
CO2	Apply propositional logic to create and interpret truth tables							
CO3	Perform operations on sets and analyze functions using Venn diagrams							
CO4	Conduct matrix operations and solve linear equations using matrices							
C05	Differentiate algebraic functions and apply calculus to find maxima and minima.							

Rajarajeswari College of Engineering (An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	1	1	1	2	1	2	1	1	1	-	-	-
CO2	2	2	2	1	1	3	1	1	1	-	-	-
CO3	1	1	1	1	2	3	1	2	-	-	-	1
CO4	1	2	2	2	1	3	-	-	-	-	-	-
CO5	2	2	2	1	2	1	-	1	1	1	-	1